
www.manaraa.com

University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

Fall 2010 

WNT2 Signaling in Lung Development WNT2 Signaling in Lung Development 

Ashley M. Goss 
university of pennsylvania, gossam@mail.med.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Developmental Biology Commons 

Recommended Citation Recommended Citation 
Goss, Ashley M., "WNT2 Signaling in Lung Development" (2010). Publicly Accessible Penn Dissertations. 
1555. 
https://repository.upenn.edu/edissertations/1555 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1555 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1555&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/11?utm_source=repository.upenn.edu%2Fedissertations%2F1555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/1555?utm_source=repository.upenn.edu%2Fedissertations%2F1555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/1555
mailto:repository@pobox.upenn.edu


www.manaraa.com

WNT2 Signaling in Lung Development WNT2 Signaling in Lung Development 

Abstract Abstract 
Development of the vertebrate lung is a complex process involving the input of signaling pathways to 
coordinate the specification and differentiation of multiple cell types. The Wnt signaling pathway plays a 
critical role in the development of many vertebrate tissue types, including the lung. However, the functions 
of individual Wnt ligands during the specification and development of respiratory lineages have not been 
fully addressed. In this dissertation, I combine mouse genetic models and ex vivo tissue culture assays to 
determine the function of Wnt2 signaling in lung development. These studies reveal critical roles for Wnt2 
signaling during the specification of lung progenitors in the foregut endoderm, and during airway smooth 
muscle development. These findings provide new insight into the position and contributions of Wnt 
signaling within the hierarchy of signaling pathways governing lung morphogenesis. 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Cell & Molecular Biology 

First Advisor First Advisor 
Dr. Edward E. Morrisey 

Keywords Keywords 
Lung development, Wnt signaling 

Subject Categories Subject Categories 
Developmental Biology 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/1555 

https://repository.upenn.edu/edissertations/1555


www.manaraa.com

WNT2 SIGNALING IN LUNG DEVELOPMENT 

 

Ashley M. Goss 

 

A DISSERTATION 

IN 

CELL AND MOLECULAR BIOLOGY 

 

Presented to the Faculties of the University of Pennsylvania 

 

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

2010 

 

Supervisor of Dissertation 

_____________________________________ 

Dr. Edward E. Morrisey, Ph.D., Professor of Medicine 

 

 

 

Chair, Cell and Molecular Biology Graduate Group 

 

_____________________________________ 

 

Dr. Daniel S. Kessler, Ph.D., Associate Professor of Cell and Developmental Biology 

 

Dissertation Committee 

 

Dr. Sarah E. Millar, Ph.D., Professor of Dermatology 

Dr. Douglas J. Epstein, Ph.D., Associate Professor of Genetics 

Dr. Catherine Lee May, Ph.D., Assistant Professor, Pathology and Laboratory Medicine 

Dr. Ben Stanger, M.D., Ph.D., Assistant Professor of Medicine 



www.manaraa.com

 

 

ii 

Acknowledgements 

 

I want to express my gratitude to my mentor, Dr. Ed Morrisey, as well as all of the past 

and current members of the Morrisey lab.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

iii 

ABSTRACT 

WNT2 SIGNALING IN LUNG DEVELOPMENT 

 

Author: Ashley M. Goss 

Supervisor: Edward E. Morrisey, Ph.D 

 

Development of the vertebrate lung is a complex process involving the input of signaling 

pathways to coordinate the specification and differentiation of multiple cell types. The 

Wnt signaling pathway plays a critical role in the development of many vertebrate tissue 

types, including the lung. However, the functions of individual Wnt ligands during the 

specification and development of respiratory lineages have not been fully addressed. In 

this dissertation, I combine mouse genetic models and ex vivo tissue culture assays to 

determine the function of Wnt2 signaling in lung development. These studies reveal 

critical roles for Wnt2 signaling during the specification of lung progenitors in the 

foregut endoderm, and during airway smooth muscle development. These findings 

provide new insight into the position and contributions of Wnt signaling within the 

hierarchy of signaling pathways governing lung morphogenesis. 
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Chapter 1: Introduction 

 

Summary 

The evolutionarily conserved Wnt signaling pathway regulates numerous 

processes during embryonic development, including patterning of the foregut endoderm 

from which the lung arises. Genetic studies in the mouse highlight the contributions of 

Wnt signaling to the specification and morphogenesis of not only the lung, but also other 

foregut-derived organs, such as the liver and pancreas. However, there is little data 

describing the molecular mechanisms and targets of Wnt signaling in the developing 

lung. This introductory chapter will summarize the current understanding of Wnt 

signaling in mouse foregut development, with emphasis placed on identifying critical 

questions concerning the function of Wnt signaling in lung development. 

 

The role of signaling pathways in lung development and disease 

The adult lung is an incredibly complex organ comprised of more than forty 

different cell types with cells serving both respiratory and nonrespiratory functions
1
. The 

primary function of the lung is to enable gas exchange, and the principle components 

contributing to this function are a network of branched airway tubules juxtaposed with a 

similarly branched vascular system. Furthermore, specialized cell types within the airway 

epithelium carry out additional functions, including surfactant secretion, mucus 

clearance, fluid transport, and immune surveillance and response
2-6

.  

Not surprisingly, defects in the signaling pathways that guide the growth and 

differentiation of these lung cell types can present serious risks for human development. 
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Mutations in several signaling pathway components are implicated in a broad spectrum of 

human birth defects referred to as esophageal atresia (EA) and tracheal esophageal fistula 

(TEF)
7-10

. Moreover, abnormal expression of developmental signaling pathways in the 

adult lung is correlated to certain diseases including fibrosis
11

, emphysema
12, 13

, and 

cancer
14-16

.  

Wnt proteins are critical intercellular transducing signals expressed during lung 

development that are often aberrantly expressed in lung diseases. Several Wnt ligands 

and components of the Wnt signaling pathway are mutated in many types of lung 

cancers
17-19

. Direct evidence for Wnt signaling and cancer incidence is demonstrated by 

dominant activation of Wnt signaling in the adult mouse lung epithelium, which results in 

higher incidence of pulmonary adenomas
20

. Activated Wnt signaling has also been 

identified in fibroproliferative diseases such as asthma, pulmonary arterial hypertension 

(PAH), and chronic obstructive pulmonary disease (COPD)
21, 22

. Altogether, the 

emerging data point to a contributing role for Wnt signaling in lung disease. A more 

thorough understanding of the mechanisms of Wnt signaling in lung development will 

help to inform therapeutic strategies and clinical care for both congenital and adult lung 

diseased states. 

 

Overview of the Wnt signaling pathway 

Wnt proteins are cysteine-rich secreted glycoproteins that signal through at least 

three known pathways (outlined in Figure 1.1). Pathway activation involves binding of 

Wnt ligands to a receptor complex comprised of the Frizzled (Fzd) family of seven-pass 

transmembrane receptors and members of the family of lipoprotein receptor related 5/6 
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proteins (Lrp5/6). Currently, 19 Wnt proteins, 10 Fzd receptors, and two Lrp co-receptors 

have been identified in mammals
23

. Adding further complexity to the pathway, studies 

have demonstrated that individual Wnt proteins can activate several pathways in a cell-

type and context-dependent manner
24-26

. Therefore, the particular pathway a Wnt ligand 

signals through will depend on specific Wnt-Fzd combinations and the presence or levels 

of intracellular factors that can prevent signaling of one pathway over another
27, 28

. 

Wnt proteins mediate many of their effects through the canonical Wnt signaling 

pathway
29

 (Figure 1.1). Activation of the canonical pathway begins with Wnt ligand 

binding to the Fzd-Lrp5/6 co-receptor complex and activation of the intracellular effector 

protein Disheveled (Dvl), which subsequently inactivates a complex of proteins including 

the constitutively active serine-threonine kinase glycogen synthase kinase 3! (Gsk3!), 

the scaffolding proteins Axin, and adenomatosis polyposis coli (APC). In the absence of 

Wnt stimulation, this complex phosphorylates !-catenin, thereby targeting it for 

proteosomal degradation. Upon Wnt pathway activation, inhibition of this !-catenin 

degradation complex allows !-catenin to accumulate at high levels and translocate into 

the nucleus where it complexes with the LEF/TCF family of transcription factors to 

activate target gene expression
28

. 

Some Wnt ligands also signal through !-catenin independent pathways (Figure 

1.1). The best characterized of these non-canonical Wnt pathways are the Ca
2+

/protein 

kinase C (PKC) and RhoA/ Jun-N-Terminal Kinase (JNK) pathways
30

. In Ca
2+

/PKC 

signaling, Wnt binding activates a G-protein dependent activity of Fzd receptors that in 

turn activates intracellular calcium signaling and calcium dependent protein kinases, 

including PKC and calmodulin-dependent protein kinase II (CaMKII)
31, 32

. In RhoA/JNK 
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signaling, Dvl activates the Rho family of GTPases (RhoA, Rac, and Cdc42) and their 

downstream effectors including Rho Associated Kinase (ROK) and JNK
33

. Although 

these pathways mediate the majority of !-catenin independent Wnt signaling, it remains 

unclear whether these pathways are truly distinct from one another. Furthermore, recent 

studies have identified increasing examples of interplay between canonical and non-

canonical pathways, as activated non-canonical signaling often attenuates canonical 

signaling
34, 35

. This is suggestive of a broader Wnt signaling network characterized by 

distinct combinations of effectors being activated for different environmental contexts 

and cell-types. 

The Wnt ligands and their downstream signaling pathways are evolutionarily 

conserved mediators of numerous developmental processes including cell fate 

specification, proliferation, migration, and adhesion
36-40

. A significant amount of data 

describing the role of Wnts in vertebrate development exists in the literature, however 

more evidence is needed to fully understand the contributions of specific Wnt ligands and 

their associated downstream signaling mechanisms to vertebrate development and 

organogenesis. 

 

Vertebrate development and organogenesis 

In the early vertebrate embryo, cells of the totipotent epiblast segregate into three 

embryonic lineages or germ layers — the mesoderm, which forms muscle, blood, and 

bone; the ectoderm, which yields the skin and nervous system; and the endoderm, which 

gives rise to the lining of the respiratory and digestive tracts. Segregation of these 

primordial lineages occurs during gastrulation (E6.0-E7.5 in the mouse), whereby the 
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totipotent cells of the epiblast divide, rearrange, and involute to set up the vertebrate body 

plan
41

. At the end of gastrulation, the early endoderm consists of a sheet of cells 

extending along the anterior-posterior axis (A-P) of the embryo
42

. Over a twenty-four 

hour period, morphogenetic movements transform the endoderm sheet into the primitive 

gut tube, from which endoderm-derived organs will bud
43-45

 (Figure 1.2A). The 

endoderm of the primitive gut tube is divided into three broad sections-the foregut, which 

is the most anterior portion; the midgut; and the hindgut. In the mouse, the foregut 

endoderm gives rise to organs including the thyroid, lungs, liver, ventral pancreas, and 

stomach. The midgut and hindgut give rise to the stomach, dorsal pancreas, and 

intestines
46

 (Figure 1.2B).  

Prior to organ budding (E8.0-9.5), the early endoderm is a morphologically 

homogenous germ layer, however signaling pathways have already imposed molecular 

differences along its A-P axis to demarcate prospective organ primordia through 

specification of progenitor cell types
42

. Numerous transcription factors are expressed 

along the A-P axis of the endoderm prior to the onset of organ budding, and identify 

subgroups of endodermal progenitors populating the organ anlage (as shown in Figure 

1.2A). A critical question in the field of developmental biology has focused on what 

signaling molecules and pathways act upon the multipotent cells of the endoderm to 

establish discrete A-P zones of competent organ progenitors. The Wnt signaling pathway 

has been heavily implicated in endoderm patterning
47, 48

. 

In the literature, there is a paucity of evidence describing the specific 

contributions of Wnt signaling in the developing mouse endoderm, and specifically the 

foregut endoderm
49

. Additional research is needed to elucidate the mechanisms of Wnt 
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signaling that potentially coordinate foregut development and organogenesis. Moreover, 

studies will need to identify direct transcriptional targets the Wnt signaling pathway 

activates to pattern and instruct organ fate in the multipotent mouse endoderm.  

 

Epithelial-mesenchymal interactions pattern the vertebrate foregut endoderm 

The A-P patterning of the vertebrate endoderm occurs in large part via soluble 

signals derived from adjacent mesodermal tissues
50

. These instructive signals can take the 

form of hormones, growth factors, cytokines, or extracellular matrix molecules, and they 

can activate sets of organ-specific genes
51, 52

. Several studies have demonstrated that the 

splanchnic mesoderm adjacent to the foregut endoderm is necessary for the specification 

of endodermal progenitors giving rise to foregut-derived organs
53-55

. For example, 

mesoderm adjacent to the ventral foregut is critical for liver induction and budding in the 

mouse embryo
43, 56, 57

. Moreover, tissue recombination experiments demonstrate that a 

bipotential liver and pancreas precursor in the foregut endoderm is directly influenced by 

the presence or absence of local mesenchymal cues, indicating that the presence of local 

signals emitted from the mesoderm underpin endodermal progenitor specification
58

. 

Recent studies demonstrate that Wnt ligands produced in the splanchnic 

mesoderm are crucial in coordinating the development of vertebrate endoderm 

derivatives in a tightly regulated temporal fashion. Several Wnts are expressed in the 

mesoderm surrounding the foregut and midgut
59, 60

, and misexpression of Wnt1 and 

Wnt5a in the mouse embryo strongly suggests that paracrine Wnt signaling patterns the 

adjacent foregut and midgut during pancreas progenitor specification and 

differentiation
61

. In zebrafish, wnt2b expression in the lateral plate mesoderm is required 
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for liver progenitor specification, and loss of wnt2b expression results in liver agenesis
48

. 

In the invertebrate system of drosophila, Wnts expressed in the lateral mesoderm have 

been shown to regulate patterning of the gut endoderm
62

. These data indicate that Wnt 

signaling is an evolutionarily conserved paracrine signaling mechanism coordinating the 

development of endoderm-derived tissues. 

Studies carried out in chick and Xenopus models also demonstrate that Wnts 

expressed in the mesoderm pattern the endoderm. Wnt signaling in conjunction with 

Fibroblast growth factor (FGF) signaling suppresses foregut fate in endoderm progenitors 

and concomitantly promotes hindgut fate
47, 50, 63

. Conversely, inhibiting Wnt/!-catenin 

activity in the Xenopus posterior endoderm results in the appearance of ectopic liver 

progenitors and activation of liver-specific genes in the presumptive intestine. 

Surprisingly, slightly later in development, Wnt and FGF signaling promote the 

development of foregut derivatives
47

. Thus, the spatial and temporal characteristics of 

Wnt paracrine signaling occurring between the vertebrate splanchnic mesoderm and 

foregut endoderm is dynamic and appears to directly impact the sequence and location of 

organ formation.  

Altogether, the published data indicate that different Wnt receptor-ligand 

combinations and their accompanying levels of expression are likely to create distinct 

patterns and thresholds of Wnt activity that will coordinate foregut patterning through the 

specification of endodermal progenitors. Further investigations into the role of Wnt 

paracrine signaling between the splanchnic mesoderm and adjacent foregut endoderm 

will be critical for a complete understanding of the role of this pathway in mouse foregut 

progenitor specification and organogenesis. 
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Epithelial-mesenchymal interactions regulate the development of lung progenitors in the 

foregut endoderm 

In agreement with the studies examining liver and pancreas progenitor 

development, several lines of in vivo and in vitro experimental evidence suggest that lung 

progenitor specification and bud outgrowth from the foregut endoderm also rely on non-

cell autonomous paracrine signaling with the adjacent splanchnic mesoderm. Studies in 

which embryonic lung mesoderm is grafted onto heterotypic epithelial cells and tissue 

demonstrate the ability of early embryonic lung mesoderm to induce robust branching 

and de novo expression of lung-specific genes
64-66

. Patterning of the foregut region at the 

site of the presumptive tracheoesophageal bifurcation depends in part on Transforming 

growth factor ! (TGF-!) signals secreted from the adjacent mesoderm
10, 67

.  

Gene targeting experiments have demonstrated that FGF-10 signaling in the 

splanchnic mesoderm is absolutely necessary for inducing lung bud development in the 

foregut endoderm. Mice homozygous mutant for either Fgf10 or its cognate 

endodermally expressed receptor Fgfr2 exhibit severely disrupted lung development with 

no main-stem bronchial development
68-70

. Interestingly, the levels and spatial 

characteristics of FGF and FGF receptor (FGFR) expression in both the splanchnic 

mesoderm and ventral foregut endoderm direct specification of either liver or lung 

progenitors
54

. This finding suggests that specification of foregut endoderm progenitors is 

significantly influenced by the presence of local mesodermal paracrine signaling factors 

in conjunction with the expression of distinct types and combinations of cell surface 

receptors in the endoderm. 
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Crosstalk between Sonic hedgehog (Shh) signaling expressed in the endoderm 

and its targets in the adjacent splanchnic mesoderm also regulate early lung endoderm 

development. Mice that are Shh
-/-

 homozygous mutant form a trachea, but lung branching 

is severely disrupted
71

. Additionally, loss of expression of the Shh-responsive 

transcription factors Gli2 and Gli3 in the embryonic mesoderm yields embryos with 

severe defects throughout lateral mesoderm-derived structures including loss of the 

esophagus, trachea, and lungs
72

.  

 

Activation of a transcriptional network establishes lung endoderm progenitor identity in 

the foregut 

The paracrine signaling occurring between the splanchnic mesoderm and foregut 

endoderm regulates the specification of lung endoderm progenitors through upregulation 

of a transcriptional network governing lung endoderm progenitor identity. Various 

classes of transcription factors — including the GATA-family members (GATA6) and 

Forkheads (Foxa1 and Foxa2) — are expressed in the presumptive lung primordium of 

the foregut endoderm and regulate the development of early lung progenitors
73, 74

. 

Compound mutant mouse models abolishing Foxa1 and Foxa2 function indicate that 

these two genes cooperate to establish competency of the foregut endoderm to gives rise 

to its derivatives including the lung
75

. GATA6 is expressed in lung epithelial progenitors 

and is required for their survival at the onset of branching morphogenesis
74, 76

.  

The transcription factor Nkx2.1 is the earliest known marker of lung progenitor 

cells distinguishing the primitive tracheal and lung endoderm field in the anterior 

foregut
44

 (Figure 1.3A). Of note is that Nkx2.1 is expressed in thyroid precursors during 
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organogenesis, and therefore Nkx2.1 is not a lung progenitor-specific transcription 

factor
77

. Targeted disruption of the Nkx2.1 gene has demonstrated that it is not required 

for lung specification, suggesting that Nkx2.1 expression is activated by other 

unidentified primary signals that induce lung specification
44, 77

.  

 

What factor(s) mediate lung progenitor specification in the foregut endoderm? 

The specific signaling events and tissue interactions that commit the multipotent 

foregut endoderm to a lung cell fate prior to the onset of morphogenesis are under 

increasing scrutiny in large part due to new and better mouse models. Overall, the 

evidence published thus far demonstrates a prominent role for the splanchnic mesoderm 

as a critical signaling center for the specification and maintenance of lung endoderm 

progenitors in the adjacent foregut. However, the question still remains whether a single 

gene contributes to the establishment of the lung endoderm primordium and whether 

there is a lung specific transcription factor mediating the entire lung morphogenesis 

program.  

Despite the drastic disruptions to the lung morphogenesis program in the 

aforementioned genetic models, with the exception of the Gli2/3 compound mutants, 

specification of the early lung and tracheal endoderm still occurs. The presence of 

Nkx2.1-expressing lung progenitor cells in the absence of these factors begs the question 

of what other signal(s) direct specification of lung progenitors in the foregut, and are 

those signals coming directly from the adjacent mesoderm? The Wnt/!-catenin signaling 

pathway represents an intriguing and plausible candidate in early lung specification and 

morphogenesis, given its critical role in the establishment of other foregut derived tissues. 
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Several Wnt ligands are expressed in the splanchnic mesoderm flanking the ventral 

foregut endoderm at the appropriate locations and developmental timepoints to mediate 

lung progenitor specification and development. However, the answer as to whether Wnt 

ligands regulate these processes awaits new genetic mouse models to address this 

hypothesis. 

 

Development of the mouse lung primordia 

Lung morphogenesis in mice has been categorized into five developmental time 

periods corresponding to histological and structural progressions
78

 (Table 1.1). For such 

an elaborate vital organ, the lung has modest beginnings: it develops initially from the 

tracheal outpocketing of the anterior foregut endoderm (outlined in Figure 1.3). 

Specification of lung progenitors in the mouse foregut endoderm occurs around E9.0. 

Lung progenitors can be detected by in situ hybridization as a population of Nkx2.1-

expressing cells in the ventral aspect of the laryngotracheal groove of the foregut 

endoderm
44

. The dorsal aspect of the anterior foregut serves as the esophagus primordium 

and is denoted by robust expression of the transcription factor Sox2
79

 (Figure 1.3A).  

After specification, the ventral Nkx2.1-positive portion of the endoderm tube 

undergoes morphogenesis to bifurcate and from the trachea, and by E11.5 the septation is 

complete with a defined trachea and esophagus (Figure 1.3B). At E10.5, the two 

primitive lung buds are comprised of three cell layers: the inner epithelium (derived from 

the endoderm), the surrounding mesenchymal stroma, and a thin outer mesothelium
80

. 

Mesenchymal cells encompass the primitive lung epithelium as it undergoes repetitive 

terminal and lateral branching during branching morphogenesis invading the splanchnic 



www.manaraa.com

 

 

12 

mesenchyme surrounding the foregut to give rise to an arborized network of airways
81

 

(Figure 1.3C). In vivo cell lineage analysis using an inducible cre recombinase mouse 

model has shown that there are two distinct non-overlapping lung progenitor cell 

populations in the foregut endoderm, which separately contribute to the proximal 

conducting airway epithelium and distal airway epithelium
82

. The tracheal endoderm 

continues to express Nkx2.1 throughout embryonic development
83

.  

 

Epithelial-mesenchymal signaling drives lung branching morphogenesis  

Branching morphogenesis in the mouse lung continues after primary budding 

through E17.0, resulting in the formation of the bronchi, bronchioles, and distal 

alveolated airways
84

. Reciprocal mesenchymal-epithelial interactions are absolutely 

essential to promote and sustain this process for appropriate proximal-distal growth and 

cell differentiation
80, 85-88

. The primary driver of the lung branching morphogenesis 

program is localized expression of the chemoattractant factor FGF-10 in the mesenchyme 

adjacent to the branching epithelial tubules, which express FGFR-2
89, 90

. Feedback 

signaling mediated by Sprouty2, an FGF-10-FGFR-2 inhibitor expressed in the tips of the 

branching epithelium, controls the size and shape of the epithelial bud
91, 92

. Experiments 

conducted in lung organ cultures also suggest that Shh and Bone morphogenetic protein 

(BMP) co-expression in the distal epithelial tips serves to progressively down-regulate 

FGF-10 expression to limit bud outgrowth
93-95

.  

In the current model of lung epithelial branching and patterning, there is a distinct 

compartment of proliferative multipotent cells located at the distal epithelial tips 

expressing the transcription factor Id2, which is only expressed in embryonic distal 
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epithelial cell populations
96

. The maintenance and proliferation of these multipotent cells 

is coordinated by crosstalk between several pathway molecules expressed in both the 

branching epithelial bud and adjacent distal mesenchyme, including Wnts, FGFs, Shh, 

and BMP/TGF-! members
95, 97-99

. The resulting gradient and spatial organization of 

molecules generated as the tips elongate restricts multipotency to the distal tip cells. As 

the epithelial tubules elongate and branch, the progeny of the tip cells continue to divide 

and undergo differentiation to give rise to all of the cell types of the bronchi and 

bronchioles
96

.  

 

The primitive lung epithelium differentiates into multiple cell types  

Coincident with lung outgrowth and branching morphogenesis is proximal-distal 

patterning of the developing airway epithelium. In the proximal conducting airways, the 

epithelium differentiates into various cell lineages including those of the secretory cell 

types (Clara cells and goblet), ciliated cells, and neuroendocrine cells
1
. In the distal 

airways, the terminal epithelial buds branch and dilate to form the presumptive alveolar 

acini (Figure 1.3C). These distal epithelial cells differentiate into either the gas-exchange 

alveolar cell type I, or the surfactant secreting alveolar cell type II
100

 (AECI/II). 

Differentiation of epithelial cells occurs in a proximal-distal direction with the secretory 

Clara and ciliated cell types appearing around E14.5-E15.5 in the proximal airways. In 

the distal airways, the alveolar epithelial cell types AECI and AECII differentiate 

perinatally and through the first week of postnatal life
101

.   

Many of the transcription factors expressed in lung endoderm progenitors and 

required for their survival and differentiation are also required in the latter stages of 
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epithelial development. Genetic deletion of Nkx2.1 and Foxa2 after the onset of 

branching morphogenesis inhibits maturation of peripheral airways leading to respiratory 

failure at birth
102, 103

. Genetic deletion of Gata6 or expression of a dominant-negative 

GATA6 fusion protein in the developing airway epithelium demonstrates that GATA6 is 

also required in the distal compartment during late alveolar epithelial differentiation
76, 104

. 

Notably, branching morphogenesis is not significantly impaired in these mutant models, 

indicating that in later stages of development, the role of these transcription factors is 

restricted primarily to airway epithelial cell differentiation.  

 

Mesenchymal signaling influences proximal-distal patterning of the airway epithelium 

The concurrent growth and branching of the epithelium in juxtaposition with the 

developing mesenchyme establishes signaling centers along the A-P axis that act to 

pattern both tissue compartments in a reciprocal fashion
80, 90

. Tissue recombination 

studies first indicated the necessity of epithelial-mesenchymal tissue interactions to 

promote lung epithelial patterning. In culture, embryonic lung epithelium is unable to 

survive more than seventy-two hours without the presence of peripheral mesenchyme. 

This suggests that the cells in the distal lung mesenchyme are releasing soluble factors 

required by the epithelium for growth and differentiation
105, 106

. Further investigations 

into this observation revealed that FGF members can replace the cytodifferentiation-

inducing function of the distal mesenchyme in recombination experiments
107, 108

. 

Tissue recombination experiments reinforce the existence of molecular A-P 

differences in the mesenchyme along the developing respiratory tract. In vitro studies 

indicate that epithelial progenitors are capable of differentiating into alternative airway 
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epithelial cell types in response to molecular cues originating from different sections of 

dissected lung mesenchyme
106, 109

. These varying sections influence proximal versus 

distal identity in the airway epithelium
65, 109, 110

. One identified factor expressed in the 

mesenchyme that mediates distal identity of epithelial progenitors is Wnt5a. Genetic 

studies in the mouse lung demonstrate that Wnt5a misexpression disrupts key patterning 

factors in the distal signaling center including Shh, FGF-10, and BMP-4, leading to 

airway branching and differentiation defects
97, 98

. These results illustrate the 

interconnectedness of the signaling interactions between the developing lung epithelium 

and mesenchyme, and also highlight a critical role for paracrine Wnt signaling in 

development of the lung epithelium. 

 

The role of Wnt/!-catenin signaling in patterning the developing lung epithelium 

Several Wnt ligands and signaling components of the !-catenin pathway are 

expressed in embryonic lung epithelial and mesenchymal cell types
111, 112

, and the 

importance of epithelial-mesenchymal paracrine signaling suggests that the Wnt/!-

catenin signaling pathway contributes a critical role in these signaling interactions. 

Transgenic mouse models including BAT-GAL and TOP-GAL demonstrate canonical 

Wnt/!-catenin signaling activity in the developing lung epithelium from E9.5-E11.5, with 

sporadic activity in a subpopulation of distal airway epithelial cells at E18.5
113-115

. These 

observations demonstrate that canonical Wnt/!-catenin is active during early lung 

development and may be influencing epithelial differentiation. 

The contributions of Wnt/!-catenin signaling activity to epithelial patterning have 

been investigated through genetic deletion or inhibition of !-catenin in the developing 
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airway epithelium and mesenchyme. The loss or suppression of epithelial !-catenin 

signaling leads to the loss of peripheral epithelial progenitors and dysregulation of 

proximal-distal patterning of the airway epithelium
115, 116

. Conversely, the expression of a 

constitutively active !-catenin-Lef1 fusion protein in early lung epithelial cell types leads 

to hyperplasia of the airway epithelium with a parallel loss of fully differentiated airway 

cell types
114

. Interestingly, activated !-catenin signaling also induces a switch in cell 

lineage commitment with distal lung epithelial cells expressing intestinal markers. This 

observation suggests that persistently high levels of !-catenin signaling can induce 

transdetermination of lung epithelial progenitor cell types, or perhaps induce 

dedifferentiation back to an early type of embryonic endodermal progenitor. Finally, 

genetic deletion of !-catenin throughout the developing mesenchyme disrupts epithelial 

cell patterning, indicating that mesenchymal Wnt/!-catenin signaling also regulates 

epithelial differentiation
117

. 

Collectively, these results demonstrate a critical role for Wnt/!-catenin signaling 

in coordinating lung proximal-distal patterning. Given that there are multiple Wnts 

expressed in the lung, and !-catenin is expressed in multiple cell types of the lung, this 

raises the possibility for numerous types of signaling interactions between the epithelium 

and mesenchyme both cell autonomously and non-autonomously. Therefore, the precise 

influence and mechanisms of Wnt/!-catenin signaling on the lung epithelium is likely to 

be complex and comprise distinct temporal and spatial signaling interactions along the A-

P axis. 
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Development of mesenchymal-derived components of the lung 

In the early lung bud, the condensing lung mesenchyme will go on to differentiate 

into several tissue types including smooth muscle (SM), and vascular and lymphatic 

vessels. Cell types comprising these lineages include airway and vascular smooth muscle 

cells, endothelial cells, myofibroblasts, lipofibroblasts, and stromal fibroblasts
118-121

. SM 

development is one of the notable patterning events occurring in lung mesenchymal 

development. At the level of the mainstem bronchi, SM develops partially around the 

airway on the dorsal surface with cartilaginous rings forming on the ventral surface. 

Slightly more posterior in the remaining proximal airways, SM forms around the entire 

epithelium, and in the more distal airways SM is absent. In the developing pulmonary 

vasculature, SM surrounds the larger blood vessels
122

.  

Airway smooth muscle development (ASM) closely succeeds the growth and 

differentiation of the airway epithelium temporally and spatially. At E11.5 in the mouse, 

a SM layer envelops the trachea and primary lung buds, and SM continues to develop 

around the proximal epithelial tubules
123

. In the current model, one source of ASM 

originates from a distal pool of Fgf10-expressing mesenchymal cells (Figure 1.4). These 

distal cells proliferate and passively translocate (or perhaps actively migrate) to surround 

the proximal airways by continued epithelial tube outgrowth and branching. The Fgf10-

expressing cells now in close proximity to the airway tubules are exposed to pro-

myogenic signals diffusing from the distal bud epithelium, which activate SM 

differentiation
95, 124, 125

. Continued exposure to these pro-myogenic signals from the 

adjacent epithelium as the cells consolidate around the airways in conjunction with 

downregulation of FGF-10 signaling promotes maturation of the ASM
126

. 
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Epithelial signaling influences lung mesenchymal development 

In vitro studies demonstrate that cultured embryonic lung mesenchyme fails to 

develop and differentiate in the absence of lung epithelium
127, 128

. Subsequent studies 

reveal that the two epithelial compartments of the lung — the inner endoderm and outer 

mesothelium — both signal to and coordinate the development of the lung mesenchyme 

and its derivatives.  

Genetic evidence demonstrates that Shh expressed from the developing lung 

epithelium is a critical epithelial factor signaling to the adjacent mesenchyme to regulate 

gene expression through its receptor Patched (Ptc) and downstream transcriptional 

activators Gli2 and Gli3
129, 130

. Shh
-/-

 null mutant lungs are hypoplastic with significantly 

decreased proliferation and downregulation of critical factors in the mesenchymal 

compartment
71

. Combinatorial genetic loss of the transcriptional activator molecules Gli2 

and Gli3 also results in a significant loss of lung mesenchymal tissues
72, 85, 131

. 

Interestingly, transgenic overexpression of Shh in the lung epithelium leads to increased 

proliferation in the adjacent mesenchyme and upregulates expression of mesenchymal 

targets including Ptc and Bmp4, indicating that Shh is a broad regulator of signaling 

activities in the mesenchymal compartment
80, 93

.  

The outer mesothelium layer expresses FGF-9 and recent investigations 

demonstrate that FGF-9 signaling will inhibit the response of the mesenchyme to Shh 

expressed from the endoderm. Loss of FGF-9 signaling in the mesothelium leads to 

decreased stromal proliferation, ultimately yielding a lung with significantly reduced 

mesenchymal mass
132, 133

. Cumulatively, these gain- and loss-of-function experiments 

highlight the significance of the signaling interplay between both epithelial compartments 
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and the mesenchymal compartment during lung morphogenesis. The reciprocal paracrine 

signaling between all three tissues appears to directly impact the size and fate of a 

mesenchymal progenitor pool in the distal lung. 

Paracrine signaling between the developing epithelium and mesenchyme is 

critical for SM development in the lung. The distal tips of the epithelial buds secrete pro-

myogenic signals including Shh and BMP-4 to the adjacent mesenchyme during 

branching morphogenesis to promote ASM development
80, 95, 124

. Misexpression of these 

signaling molecules often impairs the differentiation of adjacent immature smooth muscle 

cells (SMCs). In addition to the loss of proliferation and target gene expression in the 

mesenchyme of Shh
-/-

 null mutant lungs, there is also a loss of SM development
71, 93

. 

Fgf10 hypomorphic mice demonstrate that epithelial BMP-4 expression is a target of 

FGF-10 signaling from the adjacent mesenchyme, and the subsequent activation of BMP-

4 signaling is critical for ASM differentiation
125

.  

 

The role of Wnt/!-catenin signaling in patterning lung smooth muscle 

Recent studies indicate that Wnt/!-catenin signaling is active and plays a role 

during SM development in the lung. From E14.5 to E18.5, transgenic mouse models 

show Wnt/!-catenin signaling activity in the developing ASM
115

. Canonical Wnt/!-

catenin signaling from the lung epithelium appears to be critical for SM development in 

the lung. Loss of the epithelial-expressed Wnt7b gene leads to fatal interruptions in lung 

vascular smooth muscle (VSM) development
134

. Furthermore, treating lung explants with 

the canonical Wnt signaling inhibitor Dickkopf-1 (Dkk-1) impairs SM gene 

expression
135

. 
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More recent studies demonstrate that genetic deletion of !-catenin in the 

mesenchymal compartment impairs the amplification of Fgf10-expressing cells and 

results in a significant loss of ASM
136

. Moreover, genetic deletion of !-catenin in early 

lung SMCs also results in a significant loss mature SM
22

. Interestingly, Cohen et al. 

showed that in utero administration of the activating Wnt/!-catenin signaling 

pharmacological agent LiCl enhanced SM development in wild-type embryos, suggesting 

that Wnt/!-catenin signaling is sufficient to promote SM development in the lung
22

. 

Together, these studies demonstrate that Wnt/!-catenin signaling is critical for SM 

development in the lung.  

Despite the evidence in the literature implicating several signaling pathways in 

SM differentiation, there is still a considerable lack of information on the development of 

early SMCs in the lung. The Wnt/!-catenin signaling pathway represents an appealing 

candidate pathway regulating early-stage SMCs because of its temporospatial patterns of 

expression in the embryonic lung. Currently in the lung field, Wnt7b is the only canonical 

Wnt ligand reported to play a critical role in SM development, and Wnt7b paracrine 

signaling specifically contributes to VSM development
134

. The loss of ASM in !-catenin 

loss-of-function models suggests that other Wnt ligands expressed in the lung are 

contributing to SM development. Therefore, the generation and examination of additional 

loss-of-function mouse models for candidate Wnt ligands expressed in the lung may 

reveal additional roles for Wnt signaling in SM development. 
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Wnt ligands expressed in the mouse lung 

Several Wnt ligand-encoding genes are expressed in the developing mouse lung 

including Wnt2, Wnt2b, Wnt5a, Wnt7b, and Wnt11. Wnt7b is a canonical Wnt ligand 

expressed at high levels in the developing airway epithelium
134

. Wnt5a is expressed in 

both the developing mesenchyme and epithelium at later stages of lung development, 

with higher levels of transcript expression observed in and around the distal branching 

airway epithelium
97

. Wnt11 is expressed diffusely at low levels throughout the embryonic 

lung epithelium and mesenchyme
112, 137

. 

Genetic knockout mouse models carrying targeted disruptions of Wnt ligand-

encoding genes expressed in the lung have been generated and many are reported to have 

defects. Wnt5a knockout mice die shortly after birth from respiratory failure, and exhibit 

late stage lung branching defects with a parallel loss of maturation of distal lung 

epithelial and mesenchymal cell types
97

. Wnt11 knockout mice also suffer from perinatal 

lethality and display kidney branching defects with no reported lung phenotype
138

, 

suggesting other Wnts in the lung may function redundantly with Wnt11. Wnt7b 

knockout mice die perinatally and exhibit severely hypoplastic lungs with decreased 

epithelial and mesenchymal proliferation in addition to VSM defects
134, 139

. 

Expression of Wnt2 and Wnt2b in the mouse lung 

The Wnt2 and Wnt2b ligands are expressed throughout lung organogenesis and 

more recently have come under scrutiny in our laboratory as compelling candidates for 

the regulation of lung morphogenesis. Wnt2b is a second member of the Wnt2 family, 

sharing approximately 70% amino acid identity with Wnt2
140

. Both are expressed in 

overlapping spatiotemporal patterns in the splanchnic mesoderm and lung mesenchyme 
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during lung development. Wnt2 and Wnt2b are initially expressed around E7.5-E9.5 in 

the splanchnic mesoderm surrounding the foregut involution
140, 141

. The two genes are 

later expressed throughout the developing lung mesenchyme around E11.5, and at sites 

within the heart and vasculature
142

. We have observed that Wnt2 is expressed at higher 

levels than Wnt2b in the lung mesenchyme, and the robust expression of Wnt2 persists to 

the perinatal stages of embryonic development, while Wnt2b expression levels remain 

much lower
143

.  

Unfortunately, previously generated mouse models carrying null alleles of Wnt2 

and Wnt2b have not revealed clear roles for Wnt2 and Wnt2b signaling in lung 

development. Monkley et al. generated a Wnt2 knockout mouse model, and Wnt2
-/-

 

homozygous mutant mice display runting in the litters and placental defects, with no 

observable lung phenotype
141

. RT-PCR performed on lung and heart tissue from these 

Wnt2 knockout
 
mice indicated that this model was a hypomorph due to the presence of 

residual Wnt2 transcripts. With respect to Wnt2b, our laboratory has analyzed a 

collaborator’s Wnt2b knockout mouse model, and these mice do not exhibit any lung 

developmental defects
143

. One interpretation for the lack of lung defects in these 

knockout models is that Wnt2 and Wnt2b are functioning redundantly during lung 

development. However, the lack of a lung phenotype in the reported Wnt2 knockout 

mouse model is also likely to reflect the fact that the mutant allele is a hypomorph.  

 

Potential functions of Wnt2 and Wnt2b signaling in the lung 

These confounding factors have left many unanswered questions concerning the 

role of the Wnt2 signaling lung development, and this provided the impetus for my 
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investigations into the contributions of the Wnt2 and Wnt2b ligands to lung development. 

Several unanswered question remain regarding their function in lung development. First, 

what are the roles of the Wnt2 and Wnt2b ligands in the splanchnic mesoderm and 

developing lung mesenchyme? Second, are Wnt2 and Wnt2b functioning redundantly in 

these tissues? Third, are these ligands signaling canonically through !-catenin, or non-

canonically in their target tissues? And finally, are Wnt2 and Wnt2b signaling in a 

paracrine and/or autocrine manner, and what are the downstream targets? In order to 

address these questions, our lab recently generated a new Wnt2 knockout mouse model, 

which exhibits a complete loss of Wnt2 expression at the transcript and protein level. 

Additionally, we were granted permission to use and investigate a Wnt2b knockout model 

from a collaborating lab. The resulting analysis of the Wnt2 and Wnt2b knockout models, 

which is described in this thesis, provides novel insight into the contributions of these 

ligands during lung specification and morphogenesis. 
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Table 1.1: Progression of lung development in mice. 

 

Period Developmental 

Timepoints 

Description 

Embryonic E9.5-E11.5 Septation of the trachea and esophagus, 

formation of primitive lung buds, first 

round of branching morphogenesis to yield 

primary bronchi 

Pseudoglandular E11.5-E16.6 Continued branching morphogenesis giving 

rise to network of bronchiolar airway 

tubules and buds; vasculogenesis and 

innervation commence 

Canalicular E16.6-E17.4 Formation of the distal pulmonary acinus 

(saccules) and associated vascular network; 

epithelial differentiation commences 

Terminal saccular E17.4-P5 Dilation of the distal airway space, distal 

epithelial differentiation, surfactant 

synthesis  

Alveolar P5-P30 Alveolar growth and septation, maturation 

of pulmonary vasculature 
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Figure 1.1: The Wnt signaling pathway. 
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Figure 1.1: The Wnt signaling pathway. 

(A) Overview of the Wnt signaling pathway illustrates that Wnt ligands can activate at 

least three distinct downstream signaling pathways. In the canonical !-catenin pathway, 

Wnt ligand binding to a Fzd/Lrp co-receptor complex activates the intracellular protein 

Disheveled (Dvl), which leads to the inhibition of the !-catenin degradation complex 

(composed of Gsk3!, Axin2, and APC) and accumulation of !-catenin in the cytoplasm. 

!-catenin then enters the nucleus to interact with members of the Lef/Tcf family of 

transcription factors to activate target gene transcription. In !-catenin independent 

pathways, Wnt ligand binding to a Fzd receptor can activate either intracellular calcium 

signaling, which influences a variety of cellular processes, or activate RhoA/JNK 

signaling to mediate cell movement.  
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Figure 1.2: Endoderm development in the mouse. 
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Figure 1.2: Endoderm development in the mouse. 

(A) Schematic of the developing mouse embryo and endoderm at E8.0 after gastrulation 

occurs (E6.0-E7.5). At the end of gastrulation, the primitive endoderm germ layer exists 

as a sheet of cells that quickly undergoes a series of morphogenetic movements to form 

the primitive endoderm tube (purple). The primitive endoderm is divided into three 

anatomical sections: the anterior foregut, midgut, and posterior hindgut. Despite its 

homogenous appearance along the A-P axis of the developing embryo, molecular 

differences already denote primitive organ domains. In the foregut, transcription factors 

including the homeodomain genes Nkx2.1 [also known as thyroid transcription factor 1 

(Titf1)]
144

 and Hex (hematopoietically expressed homeobox gene)
145

, as well as the paired 

box (Pax) genes Pax8
146

 and Pax9
146, 147

, demarcate the thyroid/parathyroid, lung, and 

liver domains, respectively. In the midgut, the transcription factors Pax4
148

 and Pax6
149

, 

Nkx2.2
150

, Islet-1
151

, and Pdx1
152, 153

are expressed in the presumptive stomach, pancreas, 

and duodenum domains, respectively. Cdx2, a caudal homologue and member of the 

axial patterning Protohox gene cluster, is expressed in the hindgut
154

. (B) By E10.5, 

primitive organs have begun to bud and develop from the endoderm. The foregut 

endoderm gives rise to the lung, stomach, liver, and ventral pancreas. The midgut 

endoderm also contributes to the stomach and dorsal pancreas and duodenum of the 

intestines. The remaining hindgut gives rise to the intestines. 
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Figure 1.3: Lung organogenesis in the mouse. 
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Figure 1.3: Lung organogenesis in the mouse. 

(A-C) Schematic of lung development. (A) Around E9.0, tracheal/lung progenitors are 

specified in the ventral foregut endoderm as denoted by the expression of Nkx2.1, the 

earliest marker of lung identity. Subsequently, morphogenetic movements initiate the 

bifurcation of the tracheal endoderm (Nkx2.1 positive) and the esophageal endoderm 

(Sox2 positive). (B) By E11.5, tracheoesophageal septation has completed and lung 

morphogenesis commences with endoderm outgrowth to yield two primary lung buds. 

Branching morphogenesis promotes repetitive outgrowth and branching of the lung buds 

to yield an arborized network of airways (C). The proximal airways comprise the primary 

bronchi and distal bronchioles, while the distal alveolar compartment comprises the distal 

airways.  
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Figure 1.4: Airway smooth muscle development in the lung. 
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Figure 1.4: Airway smooth muscle development in the lung. 

Overview of smooth muscle (SM) development in the mouse lung. A sub-mesothelial 

pool of proliferating immature SMCs expressing FGF-10 and SM22" are apparent in the 

lung bud by day E11.5. As the lung bud undergoes branching morphogenesis, the 

mesenchyme condenses to bring the FGF-10
+
/SM22"

+
 SMCs in close proximity to the 

branching epithelial bud, which is secreting pro-myogenic factors including Shh and 

BMP-4. The cells coalesce around the airways and continue to differentiate in response to 

epithelial signaling, flattening to resemble fibroblast-like mature airway smooth muscle 

(ASM). During this process, the cells continue to express SM22" and now SMA, a 

mature ASM marker. Down-regulation of FGF-10 is thought to propel full differentiation 

of ASM. 
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Chapter 2: A role for Wnt2 in lung airway smooth muscle development 

A majority of the data presented in this chapter is part of a forthcoming manuscript. The 

data describing the Wnt2 expression patterns, Wnt2 knockout mouse model, and Wnt2
-/-

 

null mutant hypoplasia phenotype are published in Goss et al., 2009. 

 

Summary 

In Chapter 1, I gave an overview of the current concept of airway smooth muscle 

(ASM) development in the mouse embryonic lung. Although several signaling pathways 

have been identified as important for smooth muscle (SM) development and maturation 

after the onset of branching morphogenesis, there is less data describing the pathways 

regulating the early stages of SM development in the lung mesenchyme. In this chapter, I 

identify the Wnt2 ligand as a critical regulator of SM development. I show that the loss of 

Wnt2 leads to the down-regulation of a transcriptional and signaling network governing 

early SM development. This loss results in impaired differentiation of the primitive lung 

mesenchyme into an immature SM lineage that gives rise to ASM.  

 

Introduction 

Disruptions to SM development in humans can lead to chronic health 

complications including asthma and pulmonary hypertension
155, 156

. Understanding the 

signaling pathways coordinating the various specification and differentiation processes 

occurring during SM development are critical to a complete understanding of lung 

development as well as pathogenesis in the post-natal lung. Aberrant Wnt signaling is 
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implicated in several lung diseases including asthma
157

, and therefore deciphering the 

contributions of Wnt signaling during lung development may offer compelling correlates 

to its contributions to the diseased state.  

As I introduced in Chapter 1, the primitive lung mesenchyme gives rise to several 

cell lineages including smooth muscle cells (SMCs), which will go on to form a sheath 

around the airways and vasculature in the maturing embryonic lung. SM development is 

an intriguing patterning event occurring in the mouse lung because the origins of SMC 

types are still unclear and the pathways regulating proliferation, migration, and 

differentiation of primitive SMCs are complex and unresolved. Currently, there are no 

markers distinguishing the origins of airway and vascular smooth muscle (ASM and 

VSM), thus the identity of a SMC progenitor giving rise to ASM and/or VSM remains 

elusive. There are data suggesting that two subpopulations of lung mesenchyme give rise 

to SMC lineages that contribute separately to ASM and VSM. Genetic fatemapping 

experiments indicate that a subpopulation of mesothelial cells in the developing lung 

pleura contribute to VSM in the mouse lung, and not ASM
158

. In contrast, an enhancer 

trap transgenic mouse line expressing lacZ from the Fgf10 locus identified a 

subpopulation of Fgf10-expressing distal mesenchymal cells that condense around 

bronchial airways and give rise to ASM
125

.   

Several signaling pathways are known to be critical in lung SM development. 

FGF-10 signaling is important for ASM development and mediates this process in part, 

through signaling interactions with the epithelium. FGF-10 signaling from the 

mesenchyme activates a gene expression program in the adjacent developing epithelium, 

which signals in a reciprocal fashion back to the mesenchyme to direct SMC 
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differentiation
125

. The pro-myogenic signals expressed in the developing airway 

epithelium include Shh and BMP-4, and these factors direct SMC differentiation along 

the branching epithelial tubule as Fgf10-expressing cells condense around the primitive 

airway
159, 160

 (see Figure 1.4). FGF-9 signaling from the mesothelium is also reported to 

mediate the development of immature SMCs in the distal mesenchyme by limiting the 

differentiation response of the mesenchyme to Shh signaling
133

. 

Published data demonstrate that canonical Wnt/!-catenin signaling contributes to 

SM development in the lung. Transgenic canonical Wnt/!-catenin reporter mice show !-

catenin signaling activity in developing ASM cells, and this activity colocalizes with the 

mature SMC marker smooth muscle "-actin (SMA)
115

. Genetic deletion of !-catenin in 

primitive SMCs leads to a significant loss of mature SM in the lung
22

. Wnt7b is a 

canonical Wnt ligand expressed in the developing epithelium, and Wnt7b knockout mice 

display perinatal pulmonary hemorrhaging owing to disrupted VSM development
134

. 

Further investigation into the mechanisms of Wnt7b signaling revealed that Wnt7b 

broadly regulates the development of SMCs in the early lung bud mesenchyme
22

. The 

effects on the early SMC population at-large are intriguing in context with the observed 

perinatal VSM defects. These data suggest that epithelial-based Wnt signaling 

preferentially directs VSM development.  

Recently published data also implicates a role for autocrine canonical Wnt/!-

catenin signaling in lung SM development. Genetic deletion of !-catenin in the 

developing lung mesenchyme using a pan-mesenchymal Dermo1-cre driver leads to 

disrupted ASM development
136

. These results differ somewhat from the disrupted SM 
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patterning in Wnt7b
-/-

 null mutants, suggesting that Wnt7b may also signal through a !-

catenin independent pathway to regulate VSM.  

  Wnt2 is a ligand expressed throughout the developing lung mesenchyme. The 

expression pattern of Wnt2 suggests that it may play a role in the development of 

mesenchymal-derived lineages. In this chapter, I examine a recently generated mouse line 

from our laboratory carrying a Wnt2
 
null allele. Examination of Wnt2

-/-
 mice reveals a 

dramatic loss in ASM perinatally, stemming from decreased proliferation and 

differentiation of immature SMCs in the early lung bud. These results suggest that Wnt2 

signaling plays an important role in the development of SM in the mouse lung. 

 

Results 

Expression of Wnt2 during lung development 

Previously published data on Wnt2 expression in the embryonic mouse lung 

indicated that this ligand is expressed throughout lung organogenesis
141

. We confirmed 

this using a Wnt2-specific probe for in situ hybridizations on foregut endoderm and lung 

tissue throughout embryonic development. Wnt2 is first expressed in the mesoderm 

surrounding the ventral aspect of the anterior foregut endoderm from E9.0-E9.5 during 

the period when the lung is specified (Figure 2.1A, B), and continues throughout the 

developing lung mesenchyme with expression persisting up to perinatal timepoints 
140, 141

. 

The expression pattern of Wnt2 suggests that the gene plays a critical role in the 

development of mesenchymal lineages in the lung. To further investigate the role of 

Wnt2 function in lung development, our laboratory generated mice carrying a null allele 

of the Wnt2 gene using homologous recombination in embryonic stem (ES) cells (Figure 
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2.2). Heterozygous mutant Wnt2
+/-

 mice were interbred to generate Wnt2
-/-

 null mutant 

embryos, which were examined for possible lung developmental defects. The majority of 

Wnt2
-/-

 null mutants live to E18.5, but die within a few minutes of birth due to respiratory 

and cardiovascular defects
161

 (Table 2.1).  

 

Loss of Wnt2 leads to lung hypoplasia and down-regulation of pathways required 

for lung development. 

To explore the reason for the perinatal lethality in Wnt2
-/-

 null mutants, 

histological analysis was performed on embryos from E11.5-E18.5. These examinations 

reveal lung hypoplasia in Wnt2
-/-

 null mutants that is apparent throughout the course of 

embryogenesis and postnatally (Figure 2.3A-J). The developing lung mesenchyme is also 

noticeably thinned in Wnt2
-/-

 null mutants (Figure 2.3G-J). Despite the hypoplasia, 

wholemount immunostaining with the pan-epithelial marker E-cadherin shows that 

branching of the terminal airways appears grossly normal in E14.5 Wnt2
-/-

 null lungs 

(Figure 2.3K-N).  

To better understand the cause for the lung hypoplasia, cell proliferation analysis 

was undertaken using a Ki67 antibody to mark proliferating cells. Ki67 immunostaining 

reveals decreased proliferation in both the epithelial and mesenchymal cell compartments 

in Wnt2
-/-

 null lungs (Figure 2.3O-Q). Additionally, several signaling pathways and 

transcription factors known to be important for lung growth and differentiation including 

Fgf10, Nkx2.1, Bmp4, N-myc, and cyclin D1 are reduced in Wnt2
-/-

 null lungs (Figure 

2.3R) 
70, 144, 162-164

. In contrast, proximal-distal patterning of the epithelium is unperturbed 

in Wnt2
-/-

 null lungs, as denoted by expression of SP-C
82

, a marker of distal alveolar 
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epithelial cells, and CC10
165

, a marker of proximal bronchiolar epithelial cells (Figure 

2.3S-V). Together, these data suggest that Wnt2 signaling is important for lung 

development and that loss of Wnt2 signaling disrupts proliferation and expression of 

genes known to regulate lung development, and in particular, disrupts the development of 

the lung mesenchyme.  

 

Wnt2 signaling through !-catenin regulates airway smooth muscle development in 

the lung mesenchyme 

The appearance of a thin mesenchyme in Wnt2
-/-

 null lungs suggests possible 

defects in mesenchymal cell development and differentiation. Closer examination of 

Wnt2
-/-

 null lungs at E18.5 reveals a reduction in SM surrounding the bronchiolar airways 

as demonstrated by the loss in expression of the mature SM marker, SM22" (Figure 

2.4A-D). At high magnification, SM22"-expressing cells are sporadic around the 

airways, producing significant gaps in the SM layer (Figure 2.4C, D). Interestingly, 

SM22" expression in the SM layer of adjacent blood vessels appears unaltered (Figure 

2.4A, B), suggesting no impairment to VSM development.  

The Wnt/!-catenin transgenic reporter mice BAT-GAL and TOP-GAL show 

Wnt/!-catenin signaling activity in the developing lung SM
114, 115

, and Wnt2 is reported 

to signal canonically through the Wnt/!-catenin pathway in the lung
159, 166

. To determine 

if Wnt2 signals through !-catenin in the developing ASM, Wnt2
+/- 

heterozygous mutant 

mice were crossed into the transgenic BAT-GAL reporter background to yield Wnt2
-/-

:BAT-GAL embryos. In E14.5 control BAT-GAL embryos carrying wild-type Wnt2 

alleles, lacZ-positive cells are evident underlying the developing airway epithelium 
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(Figure 2.4E). In the absence of Wnt2, there is a reduction in the number of lacZ-positive 

cells in the presumptive ASM layer, indicating a loss of Wnt/!-catenin activity (Figure 

2.4F). Additionally, expression of the Wnt/!-catenin transcriptional target Axin2 is 

reduced in the primitive ASM layer of E14.5 Wnt2
-/-

 null lungs (Figure 2.4H). These data 

suggest that Wnt2 signals through !-catenin in the lung mesenchyme to mediate proper 

ASM development. However, this does not preclude a potential role for Wnt2 paracrine 

signaling to the adjacent epithelium. 

 

Wnt2 regulates development of the primitive lung mesenchyme and immature 

smooth muscle 

The loss of mature ASM suggests that there is an earlier defect in SMC 

development in the primitive mesenchyme. The reduced proliferation index of the 

mesenchymal compartment in Wnt2
-/-

 null lungs (Figure 2.3 O-Q) is likely one 

contributing factor to a loss in SMC development. However, the loss may also reflect 

disruption to the differentiation of immature SMCs in Wnt2
-/-

 null lungs that give rise to 

ASM.  

SM22" is a highly useful SM marker because it is expressed early in SMC 

differentiation
167

. In E11.5 wild-type embryos, SM22" expression is distinct in a 

population of cells forming around the developing proximal airway (Figure 2.5A). In 

Wnt2
-/-

 null lungs, this expression is reduced (Figure 2.5B), indicating that there is a loss 

of SMC differentiation in the absence of Wnt2 signaling. Quantitative PCR on E11.5 

wild-type and Wnt2
-/-

 null lung buds confirms a significant reduction in SM22" 

expression (Figure 2.5L).  
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PDGFR" and PDGFR! are receptor tyrosine kinases through which members of 

the platelet-derived growth factor family (PDGF) of ligands signal in embryonic 

mesenchyme to regulate proliferation, migration, and differentiation
168

. PDGFR" and 

PDGFR! are broadly expressed in the multipotent mesenchymal cells of the early lung 

bud, and have been shown to be important in the development of SMCs from the lung 

primitive mesenchyme
118, 169

. Both receptors continue to be expressed in mature SM, with 

PDGFR! expressed more strongly in VSM
22, 170

. In E11.5 wild-type embryos, expression 

of PDGFR! is observed in mesenchymal cells that are coalescing around the developing 

airways and vasculature (Figure 2.5C), however in Wnt2
-/-

 null lungs, there is reduced 

PDGFR! expression in the mesenchyme (Figure 2.5D). Quantitative PCR on E11.5 wild-

type and Wnt2
-/-

 null lung buds demonstrates a significant reduction in Pdgfr! expression 

(Figure 2.5K). Overall, these data suggest that loss of Wnt2 function disrupts the 

development of immature SMCs in the early lung mesenchyme. 

 

Wnt2 signaling is necessary for smooth muscle gene expression in the lung 

To assess whether the earliest stages of SMC differentiation are activated in  

Wnt2
-/-

 null lungs, expression levels of the transcription factors myocardin and MRTFB 

were examined. Myocardin is a member of the Myocardin family of Serum Response 

Factor (SRF) co-factors, expressed in the developing and mature SM of several tissues 

including the lung
171

. Myocardin is a critical upstream regulator of myogenesis and in 

primitive SMCs, myocardin transactivates numerous SM differentiation genes including 

SM22" and SMA
172, 173

. Two other family members expressed in embryonic and adult 

SMCs that potently confer transcriptional activity to SRF to mediate myogenesis are the 
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myocardin-related transcription factors A and B (MRTFA, MRTFB)
174

. MRTFA is 

broadly expressed throughout the developing mouse embryo in multiple tissue types
175

, 

whereas MRTFB exhibits a more cell-lineage restricted expression pattern including 

developing cardiac and immature SMCs
176

.  

At E11.5, in situ hybridizations on wild-type lung tissue show myocardin 

expression around the proximal airway of the primary lung bud (Figure 2.5E). In Wnt2
-/-

 

null lung tissue, there is a reduction in expression of myocardin in the developing ASM 

(Figure 2.5F). Slightly later at E14.5, myocardin expression levels remain lower in the 

ASM of Wnt2
-/-

 null lungs than in wild-type lungs (Figure 2.5G, H). A significant 

reduction in myocardin expression levels is confirmed by quantitative PCR on E11.5 

wild-type and Wnt2
-/-

 null lung bud tissue (Figure 2.5I). Quantitative PCR also 

demonstrates that MRTFB expression is significantly reduced in Wnt2
-/-

 null lung buds 

(Figure 2.5J). The significant reductions in myocardin and MRTFB expression in Wnt2
-/-

 

null lung buds indicates the down-regulation of a myogenic transcriptional program, 

suggesting that there is reduced SMC differentiation in the absence of Wnt2 signaling. 

 

Wnt2 signaling is sufficient to promote smooth muscle development in the lung 

 The loss of early SMC gene expression suggests that Wnt2 signaling regulates 

SMC differentiation from the multipotent mesenchyme, however it is unclear whether 

Wnt2 signaling is sufficient to promote SMC development in the lung mesenchyme.  To 

better understand the effects of Wnt2 signaling on mesenchymal cells, a recombinant 

Wnt2 protein (rWnt2) was used to treat 10T1/2 cells, an immortalized multipotent 

fibroblast-like mouse cell line
177

. Culturing 10T1/2 cells in the presence of rWnt2 for 48 
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hours leads to increased expression of several SMC genes including SM22", SMA, 

myocardin, Pdgfr", Pdgfr!, and Fgf10, as assessed by quantitative PCR (Figure 2.6A). 

Expression of the canonical Wnt transcriptional target gene Axin2 is significantly 

upregulated, indicating that the rWnt2 protein is activating Wnt/!-catenin signaling in a 

mesenchymal cell type.  

To further investigate the in vivo effects of rWnt2 on SMC development, E11.5 

wild-type lung buds were dissected and cultured for 48 hours with either control PBS or 

rWnt2 in a lung explant assay, which closely mimics in vivo development
178

. Explants 

were collected to examine for changes in SMC development by histological methods and 

quantitative PCR. In control lung bud explants, SM22" immunostaining shows 

expression in the presumptive ASM layer (Figure 2.6C). In lung bud explants cultured in 

the presence of rWnt2, SM22" expression is increased around the airways (Figure 2.6D). 

The appearance of increased ASM is complemented by increased expression of 

additional SMC marker genes including SM22", myocardin, MRTFB, Fgf10, Pdgfr!, and 

Pdgfr". The mature SM marker SMA is also increased in the presence of rWnt2, although 

not to the extent of other early SMC markers, suggesting that Wnt2 signaling promotes 

the differentiation and expansion of immature SMCs in the lung mesenchyme, rather than 

full differentiation to a more mature SMC type. 

 

Other mesenchymal-derived lineages in Wnt2
-/-

 null lungs 

 Other cell types in the mouse lung are derived from the developing mesenchyme 

including endothelial and lymphatic cell lineages
179

. The overall poor mesenchymal 

development observed Wnt2
-/-

 null lungs could signify disruption to the development of 
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multiple mesenchymal lineages, and therefore Wnt2
-/-

 null lungs were examined for 

defects in endothelial and lymphatic cell lineages.  

At E18.5, compared to wild-type lung tissue, Wnt2
-/-

 null lungs do not exhibit any 

alteration in the levels or localization of the endothelial cell marker PECAM (Figure 

2.7A, B). Quantitative PCR performed on E12.5 wild-type and Wnt2
-/-

 null lung buds 

tissue reveals only slight reductions in the expression of the endothelial marker genes 

Pecam1 and Flk1 (Figure 2.7C, D). Members of the VEGF family of molecules are 

important for regulating endothelial and lymphatic development in multiple tissue 

types
180

. Several of these members were also analyzed by quantitative PCR on E12.5 

wild-type and Wnt2
-/-

 null lung buds. VEGFA, VEGFC, and VEGFD are expressed in the 

lung during development
181

, and quantitative PCR demonstrates comparable expression 

levels of VegfA and VegfD between wild-type and Wnt2
-/-

 null lung bud tissue (Figure 

2.7E). Interestingly, VegfC expression is significantly reduced in the absence of Wnt2 

function (Figure 2.7G).  Together, these data indicate that the loss of Wnt2 in the 

embryonic lung affects other mesenchymal-derived lineages at the level of gene 

expression, during early developmental timepoints.  

 

Expression of signaling pathways important for smooth muscle development in 

Wnt2
-/-

 null lungs 

 Several signaling pathways have been identified to be critical for SM 

development in the mouse lung including the Shh, BMP, Wnt7b, and FGF-10 signaling 

pathways. Wnt2 is expressed early in the primitive mesenchyme, and Wnt2 signaling may 

lie upstream of these pathways and regulate pathway members to mediate SM 
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development. At E10.5, in situ hybridizations reveal that Wnt7b expression is reduced in 

Wnt2
-/-

 null mutant foreguts (Figure 2.8A, B). Quantitative PCR on E11.5 wild-type and 

Wnt2
-/-

 null lung buds demonstrates that Wnt7b expression levels are approximately fifty 

percent lower in Wnt2
-/-

 null lungs than wild-type lungs (Figure 2.8I). These data suggest 

that Wnt2 may be signaling in a paracrine manner to regulate Wnt7b expression. 

Shh and BMP-4 are well established as critical epithelial-mesenchymal regulators 

of SM development at the lung bud tip during branching morphogenesis
80, 93, 95, 159

. In situ 

hybridization (Figure 2.8E, F) and quantitative PCR (Figure 2.8K) on E11.5 Wnt2
-/-

 null 

lung buds indicates that Shh expression levels are similar to wild-type expression levels 

in the primitive lung endoderm. The expression levels of Bmp4 expression levels are also 

comparable between wild-type and Wnt2
-/-

 null lung buds as assessed by in situ 

hybridization (Figure 2.8G, H), and quantitative PCR (Figure 2.8L).  

Shh signals from the lung epithelium to its cognate receptor Patched2 (Ptc2), 

which is expressed in the mesenchyme
93

. Interestingly, quantitative PCR demonstrates 

that in E11.5 Wnt2
-/-

 null lung buds, Ptc2 expression is significantly reduced (Figure 

2.8M). These data indicate that Wnt2 signaling is directly or indirectly regulating the 

responsiveness of the mesenchyme to Shh signaling, which could lead to SM 

differentiation defects
182

.  

 

FGF signaling in Wnt2
-/-

 null lungs 

 FGF signaling is another pathway critical for proper lung SM development
183

.  In 

situ hybridization shows reduced Fgf10 expression in the primitive lung mesenchyme of 

Wnt2
-/-

 null mutant foreguts at E10.5 (Figure 2.8C, D). Quantitative PCR performed on 
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E11.5 lung buds also indicates that Fgf10 expression levels are approximately fifty 

percent lower in Wnt2
-/-

 null lung buds than expression levels in wild-type lung buds 

(Figure 2.8J). These data suggest that Wnt2 signaling is upstream of Fgf10 expression in 

the primitive lung mesenchyme, and the absence of Wnt2 signaling leads to a significant 

loss in Fgf10 expression that impairs development of SMCs into ASM. 

 

FGF-10 signaling regulates smooth muscle gene expression in the lung 

 Genetic models strongly suggest that FGF-10 signaling is necessary for ASM 

development in the lung
125, 183

. To test whether FGF-10 signaling acts upstream of Wnt2 

expression, E11.5 wild-type lung bud explants were treated with either control PBS or 

rFgf10. Expression of Wnt2 was analyzed by quantitative PCR in rFGF-10-treated 

explants to ascertain whether FGF-10 signaling also modulates Wnt2 signaling (Figure 

2.9A). Interestingly, Wnt2 gene expression levels are unaffected by exogenous rFGF-10, 

suggesting that FGF-10 signaling neither activates nor inhibits Wnt2 signaling in a 

feedback loop.  

Treatment of lung explants with rFGF-10 results in a significant upregulation of 

several mature SM markers including SM22", SMA, and Pdgfr" (Figure 2.9A). The 

upregulation in SM gene expression is also evident in histological sections of rFGF-10-

treated wild-type explants. SM22" immunostaining shows an increased layer of staining 

in the developing ASM layer compared to untreated explants (Figure 2.9B, C).  

The expression levels of a few SM genes were not affected by treatment with 

rFGF-10, including MRTFB and myocardin (Figure 2.9A). This could suggest that FGF-

10 signaling promotes SMC development by enhancing the transcriptional activity of the 
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myocardin/MRTFB/SRF co-factors, rather than by upregulating myocardin and MRTFB 

expression. Interestingly, Pdgfr! expression levels were unchanged in the presence of 

rFGF-10. In mature SM of the embryonic lung, Pdgfr! is highly expressed in the 

VSM
169

, and Fgf10-expressing cells are not reported contribute to the VSM
125

. The 

increase in Pdgfr" expression in parallel with the lack of Pdgfr! upregulation in rFGF-

10-treated lung explants is intriguing, and could reflect differential upregulation of genes 

that promote differentiation of immature SMCs into ASM cell populations versus VSM 

cell populations.  

 

Wnt2 regulates smooth muscle development through activation of downstream 

FGF-10 signaling  

The data thus far suggest that Wnt2 signaling mediates ASM development in part, 

through downstream activation of FGF-10 signaling. To further investigate the 

relationship between Wnt2 and FGF-10 signaling, lung buds were dissected from Wnt2
+/- 

heterozygous mutant crosses for lung explant rescue assays with rFGF-10 to determine if 

activated FGF-10 signaling can rescue Wnt2 loss-of-function. Lung bud explants were 

individually cultured in the presence of either control PBS or rFGF-10 for 48 hours, and 

subsequently harvested for histological sectioning and quantitative PCR.  

Quantitative PCR assessment of SM gene expression in control Wnt2
-/- 

null lung 

bud explants treated with PBS reiterates previous results showing decreased expression 

of SM genes including SM22", SMA, myocardin, and Pdgfr" (Figure 2.10A). In the 

presence of rFGF-10, there is partial rescue of SM gene expression levels. Compared to 

untreated Wnt2
-/- 

null lung bud explants, rFGF-10-treated Wnt2
-/- 

null lung bud explants 
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exhibit significant upregulation of SM22" and SMA expression. Myocardin and Pdgfr" 

expression show gross upregulation in rFGF-10-treated Wnt2
-/- 

null lung bud explants, 

however the changes are not statistically significant compared to untreated Wnt2
-/- 

lung 

bud explants. SM22" immunostaining on histological cross-sections shows reduced 

 expression around the developing airways in Wnt2
-/- 

null lung bud explants as expected 

(Figure 2.10C). In the presence of rFGF-10, SM22" expression is increased and is 

localized around the airways in Wnt2
-/- 

null lung bud explants as in wild-type explants 

(Figure 2.10B, D). Overall, these data suggest that rFGF-10 can promote the expansion 

and differentiation of a reduced immature SMC population in Wnt2
-/- 

null lung bud 

explants. The upregulation of several SM genes in the presence of rFgf10 is not 

statistically significant enough to deem a full rescue. However, there is an overall trend 

towards upregulated SM gene expression and the histological data also support a partial 

rescue of the Wnt2
-/- 

loss-of-function ASM phenotype. 

 Taken together, these data suggest a model in which a Wnt2-FGF-10 signaling 

axis regulates the proliferation and differentiation of ASM from primitive mesenchymal 

cells in the lung (Figure 2.11). Wnt2 signaling promotes the differentiation of an 

immature pool of SMCs through direct or indirect activation of a myogenic regulatory 

network including myocardin, SM22", and MRTFB. Wnt2 also activates FGF-10 

signaling in the mesenchyme, which further drives proliferation and mediates continued 

SMC differentiation into mature ASM expressing SM22", SMA, and Pdgfr".  
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Discussion   

 

Recent genetic evidence demonstrates that Wnt/!-catenin signaling lies upstream 

of signals governing SM development in the mouse lung. Loss of the canonical ligand 

Wnt7b in the embryonic lung epithelium leads to severe VSM defects, demonstrating a 

critical role for paracrine Wnt/!-catenin signaling between the developing epithelium and 

mesenchyme
134

. Additional studies demonstrate that genetic deletion of !-catenin in the 

primitive lung mesenchyme also disrupts ASM development
136

, implicating a potential 

function for other canonical Wnt ligands expressed in the lung signaling in mesenchymal 

cells to give rise to ASM. In this study, I identify Wnt2 as a canonical Wnt ligand 

required in the lung mesenchyme to mediate ASM development. This study provides the 

first evidence of a role for Wnt2 signaling in lung SM development. 

 One of the striking aspects of our Wnt2
-/-

 null mutant phenotype is the appearance 

of a hypoplastic lung, which is evident from early stages of lung bud outgrowth through 

perinatal timepoints. One contributing factor to this hypoplasia is the reduction in 

proliferation in both the epithelial and mesenchymal compartment, suggesting that Wnt2 

is signaling in both an autocrine and paracrine manner to regulate the development of 

both tissue compartments. This observation agrees with the well-established role for 

Wnts in tissue growth and a previously described role for Wnt signaling in early lung 

development regulating overall proliferation
139

. Interestingly, proximal-distal patterning 

of the epithelium is unaltered in Wnt2
-/-

 null mutants, suggesting that Wnt2 paracrine 

signaling does not regulate epithelial cell identity.   

Canonical Wnt/!-catenin signaling is active during early lung development
184

, 

and the data presented here demonstrate that Wnt2 signals canonically through !-catenin 



www.manaraa.com

 

 

49 

in the lung. This is supported by the finding of reduced Wnt/!-catenin activity in the 

developing ASM of Wnt2
-/-

 null mutants. However this does not rule out the loss of 

Wnt/!-catenin activity in other cells types that are not resolved in the BAT-GAL 

transgenic model.  

Interestingly, defects in ASM are observed Wnt2
-/-

 null mutants, whereas the 

VSM appears grossly normal. Wnt7b signaling from the lung epithelium regulates VSM 

development
134

, and analysis of Wnt2
-/- 

null mutant lungs demonstrates that Wnt7b is 

expressed in Wnt2
-/-

 null mutants, albeit at reduced levels. Additionally, Wnt2 expression 

is reduced in Wnt7b
-/- 

null lungs (E. Cohen, personal communication), suggesting there is 

signaling interplay between epithelial- and mesenchymal-expressed Wnt ligands in the 

lung. If Wnt2 signaling is important for VSM development, the potential effects from 

loss of Wnt2 signaling may be compensated by the presence of Wnt7b signaling. 

Furthermore, the additional Wnt2-family member, Wnt2b, is also expressed in the lung 

mesenchyme and could function redundantly with Wnt2 signaling (see Chapter 3)
143

.  

A recent study describing conditional mutants in !-catenin signaling in the 

developing lung mesenchyme also suggests a role for Wnt/!-catenin in the differentiation 

of the endothelial lineage
136

, and Wnt2
-/-

 null embryoid bodies are unable to differentiate 

into endothelial cells
142

. In contrast to the published data, the current evidence does not 

indicate a significant defect in endothelial development in Wnt2
-/-

 null lungs. Despite 

slight reductions in the early gene expression of select endothelial and lymphatic 

markers, perinatally, the vasculature and lymphatic vessels appear histologically normal. 

This does not, however, obviate persistent molecular deficiencies in the development of 

these tissues that could affect the physiology and respiration of the neonate. The lack of a 
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prominent embryonic phenotype could be due to compensation by other Wnt ligands 

including Wnt2b and Wnt7b, or other factors signaling through !-catenin to regulate 

endothelial development. Additional studies will be undertaken to address whether there 

are any disruptions in endothelial and development throughout the course of embryonic 

lung development. The significant reduction in VegfC expression hints at possible 

lymphatic defects
185

, suggesting that further analysis of lymphatic markers including 

LYVE-1
186

 and Prox1
187

 is warranted.  

 Wnt2 is expressed during the earliest stages of lung morphogenesis, and therefore 

the perinatal ASM deficiency could be the result of an early defect in the development of 

SMCs in the distal mesenchyme. Analysis of Wnt2
-/-

 null mutants during the early stages 

of myogenesis indicates reduced expression of the genes regulating the earliest aspects of 

SMC differentiation from the primitive mesenchyme including myocardin, MRTFB, and 

Pdgfr!. These results suggest that Wnt2 signaling is regulating the development of the 

multipotent mesenchymal compartment and differentiation of immature SMCs in the 

mouse lung.  

The reduced Pdgfr! expression might be affecting the development of immature 

SMCs that give rise to the VSM, however the VSM appears histologically normal in 

Wnt2
-/-

 null lungs. Wnt7b paracrine signaling also regulates SMC development in the 

primitive mesenchyme, and loss of Wnt7b function decreases the expression of Pdgfr" 

and Pdgfr!22. Yet perinatally, Wnt7b
-/-

 mutants display VSM defects
134

, a cell lineage 

predominantly expressing Pdgfr!170. Interestingly, the data presented here show that 

activation of FGF-10 signaling — a pathway regulating ASM development —leads to the 

upregulation of Pdgfr" expression, and not Pdgfr! expression. Additional analyses will 
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need to be undertaken to better understand whether there are differences in expression 

levels between Pdgfr" and Pdgfr! in Wnt2
-/-

 null mutants at discrete embryonic 

timepoints. The embryonic origins of ASM and VSM are unclear, and currently there are 

no known genes expressed preferentially in ASM or VSM progenitor populations. The 

disparate SM phenotypes between Wnt7b
-/- 

null mutants and Wnt2
-/-

 null mutants may 

suggest that these signaling pathways are acting on two distinct, as-of-yet described 

immature SMC subpopulations, or it may suggest differential downstream signaling 

effects (e.g. activation of FGF-10) from Wnt ligands that are expressed from different 

tissue compartments.  

A Wnt-FGF regulatory network is thought to govern development of the lung 

mesenchyme
117

, and mice carrying hypomorphic or null alleles of Fgf10 and Fgfr2, the 

cognate receptor of FGF-10, exhibit ASM deficiencies
183, 188

. In Wnt2
-/- 

null mutant lungs, 

both Fgf10 expression and Fgfr2 expression are reduced, implicating a Wnt2-FGF-10 

signaling network in the coordination of ASM development. Using a lung explant assay, I 

demonstrate that FGF-10 signaling promotes ASM development through upregulation of 

several mature SM markers. These findings would suggest that FGF-10 signaling 

mediates the expansion and differentiation of immature SMCs towards a more mature 

ASM lineage.  

The upstream signals governing Fgf10 expression are poorly understood. 

Recently published data from our laboratory examining !-catenin mutant hearts 

demonstrate that Wnt/!-catenin signaling regulates Fgf10 expression in the developing 

cardiac mesoderm
189

. Furthermore, during late stages of lung development, Fgf10 

expression is regulated by Wnt5a
98

. In wild-type lung bud explants treated with rWnt2, 
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Fgf10 expression is significantly upregulated, suggesting that FGF-10 signaling is 

downstream of Wnt2 signaling. However, ectopic FGF-10 expression in lung bud 

explants does not alter Wnt2 expression, suggesting there is no feedback signaling 

occurring between FGF-10 and Wnt2. 

Wnt2 may be regulating FGF-10 signaling directly or indirectly in the lung 

mesenchyme. ASM development relies upon signaling interactions between FGF-10 in 

the mesenchyme and Shh in the epithelium
94

. Loss of Shh expression in the lung 

endoderm, however, does not lead to reduction in Fgf10 expression
71

, suggesting that 

other factors expressed in the mesenchyme are regulating FGF-10 signaling. One possible 

factor that may regulate Fgf10 expression in the lung could be Ptc2, a mesenchymal Shh 

target. In Wnt2
-/-

 null lungs, there is a significant decrease in Ptc2 expression, indicating a 

reduced responsiveness of the lung mesenchyme to pro-myogenic signaling.  

In summary, the studies I have described demonstrate that Wnt2 signaling is 

necessary for ASM development in the mouse lung. Wnt2 expression during early lung 

morphogenesis directs the proliferation and differentiation of ASM from the primitive 

lung mesenchyme. Wnt2 signaling coordinates ASM development through direct or 

indirect upregulation of several well-established myogenic transcription factors and FGF-

10 signaling, which promotes further commitment of immature SMCs towards the ASM 

lineage. In the absence of Wnt2 signaling, ectopic FGF-10 can partially rescue ASM 

development. These results define a Wnt2-FGF-10 signaling axis governing early ASM 

development in the lung.  
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Materials and Methods 

 

Mice 

 Wnt2 mutant mice were generated using recombineering techniques to replace a 

portion of the coding region of the first exon with the reverse tet-activator cDNA (rtta). 

Correctly targeted ES cells were used to generate chimeric mice that were bred to 

transmit these mutant alleles through the germline. Generation and genotyping of the 

BAT-GAL mouse line has been previously described
113

. The University of Pennsylvania 

Institutional Animal Care and Use Committee approved all animal protocols. Genotyping 

primer sequences for the Wnt2 mice are as follows: 

Wnt2
rtta

: 

Wnt2Forward (5’ TGAGTCTCACCACTAGCCGCA 3’) 

Wnt2Reverse (5’ ACTGGGAATCAGCCAGGGAGGGT 3’) 

Wnt2rttaReverse (5’ TCTCAATGGCTAAGGCGTCG 3’) 

Histology  

Embryos were fixed in 4% paraformaldehyde for 24 hours, dehydrated in a series of 

ethanol washes, and then embedded in paraffin for tissue sectioning. Dissected 

embryonic lung buds and foreguts were fixed in 4% paraformaldehyde overnight, 

dehydrated in a series of methanol washes and blocked a 10% normal goat serum/PBS 

solution before wholemount immunostaining. Radioactive in situ hybridization and 

immunohistochemistry were performed as previously described
190

. Tissue sections were 

stained with the following antibodies and dilutions: anti-Axin2 (1:100), anti-CC10 (Santa 

Cruz; 1:20), anti-E Cadherin (Sigma, 1:50), anti-Ki67 (Vector Laboratories, 1:50), anti-

Pdgfr! (Cell Signaling Technology Inc.; 1:50), anti-PECAM (PharMingen; 1:500), anti-

SPC (Chemicon; 1:500), and anti-SM22" (Abcam; 1:500). Quantification of Ki67 
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positive cell populations was performed by using at least three different tissue sections 

from at least three different embryos of the same genotype. !-galactosidase histochemical 

staining of embryos was performed as previously described by our laboratory
134

.  

Quantitative RT-PCR 

Total RNA was isolated from lung tissue at the indicated time points using Trizol 

reagent, reverse transcribed using SuperScript First Strand Synthesis System (Invitrogen), 

and used in quantitative real time PCR analysis using the oligonucleotides listed below. 

RNA was isolated from at least 5 lung bud tissue samples corresponding to each 

genotype. 

Axin2 

F (5’ CAGCCCTTGTGGTTCAACCT 3’) 

R (5’ GGTAGATTCCTGATGGCCGTAGT 3’) 

Bmp4 

F (5’ CCCTTTCCACTGGCTGATCA 3’) 

R (5’ GGGACACAACAGGCCTTAGG 3’) 

CC10 

F (5’ ATCCTAACAAGTCCTCTGTGTAAGCA 3’) 

R (5’ GGAGACACAGGGCAGTGACA 3’) 

Cyclin D1 

F (5’ GATGTGAGGGAAGAGGTGAAGGT 3’) 

R (5’ CAATGAGAATCTGGTTCTGAACGT 3’) 

Fgf9 

F (5’ TTCATGCGGTGGGTTCTTATT 3’) 
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R (5’ TCCTCATCCAAGCTTCCATCA 3’) 

Fgf10 

F (5’ CAGTAAGACACGCAAGCATTTACTG 3’) 

R (5’AATCTGATCCAATTCTTCCATGGT 3’) 

Fgfr2 

F (5’ GCTTCTCAGTGAGTTTTAATAACAGCTT 3’) 

R (5’ GAATGATGCTGGGCTTTTGC 3’) 

Flk1 

F (5’ AGAGCGATGTGTGGTCTTTCG 3’) 

R (5’ TCTCCTACAAAATTCTTCATCAATCTTG 3’) 

MRTFB 

F (5’ CAACATGGAGTGGCTAGACATTACC 3’) 

R (5’ GGTCCAGAAAATCAGCAGAGAAC 3’) 

Myocardin 

F (5’ CAACACCTTGCCCAGTTATCAG 3’) 

R (5’ GCAGCGGACAAGTCAGATGA 3’) 

Nkx2.1 

F (5’ CTTCATCTTTCCCCCCTTCCT 3’) 

R (5’ GGTTGAATTTGCTTGGCTGTTT 3’) 

N-myc 

F (5’ TGTGTTGACATTAAGAATGTTGGTTTAC 3’) 

R (5’ TTTCCAAGGTCATGGCAGAAC 3’) 

Pdgfr" 
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F (5’ TGCAGTTGCCTTACGACTCCAGAT 3’) 

R (5’ AGCCACCTTCATTACAGGTTGGGA 3’) 

Pdgfr! 

F (5’ ACTACATCTCCAAAGGCAGCACCT 3’) 

R (5’ TGTAGAACTGGTCGTTCATGGGCA 3’) 

Pecam1 

F (5’ ATTCCTCAGGCTCGGGTCTT 3’) 

R (5’ CATGCACCTTCACCTCGTA 3’) 

Ptc2 

F (5’ AACATGGTCGCCTTTTTCATG 3’) 

R (5’ GCATTACCGCTGCAAAGTTG 3’) 

Shh 

F (5’ ACCCAACTCCGATGTGTTCCGTTA 3’) 

R (5’ TATATAACCTTGCCTGCCGCTGCT 3’) 

rSMA (these sequences are based on rat sequence, but cross-react with mouse transcripts) 

F (5’ GCTCCTCCAGAACGCAAATATT 3’) 

R (5’ TCGTCATACTCCTGTTTGCTGATC 3’) 

SP-C 

F (5’ CCCTCCACACCCACCTCTAA 3’) 

R (5’ CACAGCAAGGCCTAGGAAAGC 3’) 

VegfA 

F (5’ GTACCTCCACCATGCCAAGTG 3’) 

R (5’ AGCTTCGCTGGTAGACATCCA 3’) 
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VegfC 

F (5’ AGAAGACCGTGTGCGAATCG 3’) 

R (5’ AGATGTGGCCTTTTCCAATACG 3’) 

VegfD 

F (5’ CAGGAGAACCCTTGATTCAACTTC 3’) 

R (5’ GGGTAGTGGGCAACAGTGACA 3’) 

Wnt2 

F (5’ TCTTGAAACAAGAATGCAAGTGTCA 3’) 

R (5’ GAGATAGTCGCCTGTTTTCCTGAA 3’) 

Wnt7b 

F (5’ GGATGCCCGTGAGATCAAAA 3’) 

R (5’ CACACCGTGACACTTACATTCCA 3’) 

Lung explant cultures 

Lung buds were dissected from E11.5 embryos and cultured in BGjb media (Invitrogen) 

supplemented with .1mg/ml ascorbic acid and anti/anti for 48 hours as previously 

described
104

. Explants were cultured on a .4µm membrane filter (BD Falcon). Embryos 

were collected from wild-type females or generated from Wnt2 heterozygous mutant 

crosses. Exogenous recombinant human Wnt2 protein (Novus Biologicals) was added to 

the lung explant media at a concentration of .15ug/ml. Exogenous recombinant human 

Fgf10 (R & D Systems) was added to the lung explant media at a concentration of 

200ug/ml. At least 8 explants were used for each experimental condition and treatment. 
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Cell Culture 

10T1/2 cells were cultured in Eagle's Basal medium with Earle's BSS, 2 mM L-

glutamine, 1.5 g/L sodium bicarbonate, and 10% heat-inactivated fetal bovine serum as 

suggested by ATCC. Recombinant human Wnt2 protein was added to the 10T1/2 media 

at a concentration of .15ug/ml, and cultured for 48 hours before harvesting for Q-PCR 

analysis.  
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Table 2.1:  Survival ratios of Wnt2 mutants. 

 

Genotypes of offspring from crosses between Wnt2
+/-

 heterozygous mice (expect 1:2:1 

ratio of Wnt2
+/+

: Wnt2
+/-

: Wnt2
-/-

). 

 

Genotype E12.5-E14.5 E18.5 3 weeks 

+/+ 23 (25%) 18 (24%) 53 (30.5%) 

+/- 48 (52%) 41 (54%) 114 (66%) 

-/- 21 (23%) 17 (22%) 7 (4%) 
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Figure 2.1: Expression pattern of Wnt2 during lung development. 
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Figure 2.1. Expression pattern of Wnt2 during lung development.   

(A-F) In situ hybridization for Wnt2 expression on wild-type embryo cross-sections. (A, 

B) Wnt2 is expressed in the splanchnic mesoderm surrounding the ventral aspect of the 

anterior foregut from E9.0-E9.5. (C-F) From E12.5-E18.5, Wnt2 is expressed in the 

developing mesenchyme with higher levels surrounding the distal regions of the 

branching airways. Scale bars=200 µm (A, B), 600 µm (C, D, E), 800 µm (F).  
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Figure 2.2: Wnt2 gene targeting strategy. 
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Figure 2.2: Wnt2 gene targeting strategy. 

(A) Schematic of the Wnt2 gene targeting strategy with a representative Southern blot 

using the indicated probe1/ HindIII and probe 2/BamHI digests (B). The reverse tet-

activator (rtta) cDNA was used to replace the coding region of exon 1 of Wnt2. The 

neomycin cassette was removed using Flper mice (flp sites=green circles). (C) PCR was 

used to verify its loss (+/neo=Wnt2
+/-

 with neo cassette, +/#neo=Wnt2
+/-

 without neo 

cassette, neo/neo=Wnt2
-/- 

with neo cassette, +/+=wild type littermate, - = water PCR 

control). For unknown reasons, the rtta is not active in this animal model.  
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Figure 2.3: Loss of Wnt2 leads to lung hypoplasia and down-regulation of pathways  

 

required for lung development. 
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Figure 2.3: Loss of Wnt2 leads to lung hypoplasia and down-regulation of pathways  

 

required for lung development.   

 

Wnt2
-/-

 null mutants exhibit lung hypoplasia as shown by whole mount comparison (A, 

B) and H+E staining of histological cross-sections from E14.5 and E18.5 Wnt2
-/-

 null 

embryos (C-H) and P0 lungs (I, J).  Dilation of alveolar sacs and thinned mesenchyme is 

observed at E18.5 (G, H) and at P0 (I, J) in Wnt2
-/-

 null lungs. (K-N) Whole mount 

immunostaining of E14.5 lung buds with E-cadherin shows relatively normal distal 

branching of airways in Wnt2
-/-

 null lungs (M, N). Ki67 immunostaining indicates a 

significant decrease in proliferation in both the lung endoderm and mesenchyme of  

Wnt2
-/-

 null mutants (O, P), and this is confirmed by quantification of proliferation in 

both compartments (Q). (R) Quantitative PCR on E11.5 Wnt2
-/-

 null lungs indicates 

decreased expression of genes critical for lung development. (S-V) Normal proximal-

distal patterning occurs in Wnt2
-/-

 null lungs as assessed by SP-C (S, T) and CC10 (U, V) 

immunostaining. Error bars indicate one standard deviation. Airways denoted by ($) 

symbol on histological sections. Scale bars=800 µm (C, D, E, F), 200 µm (G, H, S, T), 

400 µm (U, V), 600 µm (I, J), 100 µm (O, P). 
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Figure 2.4: Wnt2
-/-

 null lungs exhibit airway smooth muscle defects. 
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Figure 2.4: Wnt2
-/-

 null lungs exhibit airway smooth muscle defects. 

Histological cross-sections of E18.5 wildtype (A, C) and Wnt2
-/-

 null mutant embryos (B, 

D). (A-D) SM22" immunostaining demonstrates reduced SM around the distal airways 

(B, arrowheads) in Wnt2
-/-

 null lungs. Higher magnification (C, D) reveals the lack of a 

contiguous layer of SM surrounding the airway epithelium in Wnt2
-/-

 null lungs (D, 

arrowheads). The SM layer surrounding adjacent blood vessels does not appear to be 

reduced (arrows in A, B). (E, F) Histological cross-sections of lacZ-stained E14.5 wild-

type BAT-GAL and Wnt2
-/-

:BAT-GAL mutant embryos shows lacZ expression in wild-

type epithelium (E, arrows) and primitive ASM cells (E, arrowheads). Loss of Wnt2 in 

the BAT-GAL background results in decreased lacZ expression in SMCs (F, arrowhead), 

while epithelial lacZ expression is retained (F, arrows). (G, H) Axin2 immunostaining on 

E14.5 wild-type lung cross-sections demonstrates robust expression in the developing 

ASM (G, arrowhead), and this expression is reduced in Wnt2
-/-

 null mutant lungs (H, 

arrowhead). Airways denoted by ($) symbol on histological sections. Scale bars=200 µm 

(A, B, E, F), 100 µm (C, D, G, H).  
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Figure 2.5: Loss of Wnt2 disrupts development of the lung mesenchyme and  

 

immature smooth muscle. 
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Figure 2.5: Loss of Wnt2 disrupts development of the lung mesenchyme and 

immature smooth muscle. 

Histological cross-sections of E11.5 and E14.5 wild-type (A, C, E, G) and Wnt2
-/- 

null 

mutant embryos (B, D, F, H). (A, B) At E11.5, SM22" immunostaining demonstrates 

expression in the primitive ASM layer (A, arrowhead), and this expression is reduced in 

Wnt2
-/-

 null lungs (B, arrowhead). (C, D) PDGFR! immunostaining shows expression 

throughout the lung mesenchyme in E11.5 wild-type lung tissue (C), however this 

mesenchymal expression is reduced in Wnt2
-/- 

null lungs (D). (E-H) In situ hybridizations 

for myocardin show decreased expression in the developing SM surrounding the airways 

at E11.5 (arrowheads in E, F) and later at E14.5 (arrowheads in G, H). (I-L) Assessment 

of mesenchymal and immature smooth muscle gene expression by quantitative PCR on 

E11.5 lung buds demonstrates significantly reduced levels of myocardin, MRTFB, 

Pdgfr!, and SM22" expression in Wnt2
-/-

 null lung buds. Error bars indicate one standard 

deviation. *P < 0.05. N=5 lung buds. Airways denoted by ($) symbol on histological 

sections. Scale bars=200 µm (A-F), 400 µm (G, H). 
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Figure 2.6: Wnt2 signaling is sufficient to promote smooth muscle development in  

 

mesenchymal cell types. 
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Figure 2.6: Wnt2 signaling is sufficient to promote smooth muscle development in 

mesenchymal cell types. 

Assessment of SM gene expression by quantitative PCR in 10T1/2 cells (A) and wild-

type E11.5 lung bud explants (B) cultured in the absence (control) or presence of rWnt2 

protein. (A) Treating immortalized multipotent fibroblast-like 10T1/2 cells for 48 hours 

with rWnt2 leads to increased expression of SM genes including SM22", SMA, 

myocardin, Pdgfr", Pdgfr!, and Fgf10. Treatment of wild-type lung bud explants with 

rWnt2 also leads to increased SM gene expression (B). (C, D) SM22" immunostaining 

on histological cross-sections of the cultured lung bud explants shows increased 

expression in the developing ASM in the presence of rWnt2 (D). Error bars indicate one 

standard deviation. *P < 0.05. N=5 lung bud explants. Scale bars=200 µm (C, D). 
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Figure 2.7: Development of other mesenchymal-derived lineages in Wnt2
-/- 

null  

 

lungs. 
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Figure 2.7: Development of other mesenchymal-derived lineages in Wnt2
-/- 

null 

lungs. 

Histological cross-sections of E18.5 wild-type (A) and Wnt2
-/-

 null mutant embryos (B). 

PECAM immunostaining shows no change in expression levels between wild-type (A) 

and Wnt2
-/-

 null lung tissue (B). (C-E) Quantitative PCR on E12.5 lung bud tissue shows 

no significant changes in expression levels of Pecam1 (C) and Flk1 (D) between wild-

type and Wnt2
-/-

 null mutant lung buds. (E) Analysis of Vegf family members expressed 

in the lung indicates that VegfC expression is significantly reduced in Wnt2
-/-

 null mutant 

lung buds. Error bars indicate one standard deviation. *P < 0.05. N=5 lung buds. Airways 

denoted by ($) symbol on histological sections. Scale bars=600 µm (A, B). 
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Figure 2.8: Evaluation of signaling factors important for smooth muscle  

 

development in Wnt2
-/-

 null lungs. 
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Figure 2.8: Evaluation of signaling factors important for smooth muscle 

development in Wnt2
-/-

 null lungs. 

Histological cross-sections of wild-type (A, C, E, G) and Wnt2
-/- 

null mutant embryos (B, 

D, F, H). (A, B) At E10.5, in situ hybridization for Wnt7b shows reduced expression in 

the primitive lung endoderm of Wnt2
-/- 

null tissue. (C, D) In the adjacent mesenchyme, in 

situ hybridization shows that Fgf10 expression is also reduced in E10.5 Wnt2
-/- 

null 

mutant tissue. (E, F) At E11.5, in situ hybridization for Shh shows similar levels of 

expression in the primitive lung epithelium of wild-type and Wnt2
-/- 

null tissue. (G, H) At 

E11.5, in situ hybridizations indicate no changes in Bmp4 expression levels in the lung 

mesenchyme and epithelium between wild-type and Wnt2
-/-

 null mutant tissue. (I-M) 

Assessment by quantitative PCR on E11.5 lung buds demonstrates that Wnt7b (I), Fgf10 

(J), and Ptc2 (M) expression levels are significantly reduced in Wnt2
-/-

 null lung buds, 

whereas the expression levels of Shh (K) and Bmp4 (L) are unchanged. Error bars 

indicate one standard deviation. *P < 0.05. N=5 lung buds. Primitive airway denoted by 

($) symbol on histological sections. Scale bars=100 µm (A-H). 
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Figure 2.9: FGF-10 signaling regulates smooth muscle gene expression and  

 

development in lung buds.   
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Figure 2.9: FGF-10 signaling regulates smooth muscle gene expression and 

development in lung buds.   

(A) Assessment of SM gene expression by quantitative PCR in wild-type lung bud 

explants treated with either PBS (control) or rFGF-10. Treating wild-type lung bud 

explants with rFGF-10 leads to increased expression of SM genes including SM22", 

SMA, and Pdgfr". (B, C) SM22" immunostaining on histological cross-sections of lung 

bud explants treated with rFGF-10 shows increased expression in the developing SM 

around primitive airways (C). Error bars indicate one standard deviation. *P < 0.05. N=5 

lung bud explants. Scale bars=100 µm (B, C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

78 

Figure 2.10: Wnt2 regulates smooth muscle development through activation of  

 

downstream FGF-10 signaling. 
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Figure 2.10: Wnt2 regulates smooth muscle development through activation of 

downstream FGF-10 signaling. 

(A) Assessment of SM gene expression by quantitative PCR in cultured E11.5 Wnt2
+/+

 

wildtype and Wnt2
-/-

 null lung bud explants. In the presence of rFGF-10, the expression 

levels of SM22" and SMA are significantly upregulated compared to untreated Wnt2
-/-

 

null lung bud explants. The expression levels of myocardin and Pdgfr" are increased, 

however the increase is not statistically significant compared to expression levels in 

untreated Wnt2
-/-

 null lung bud explants. Wnt2 expression levels were also measured to 

confirm the genotyping of lung bud explant populations. (B-D) SM22" immunostaining 

on histological cross-sections of control Wnt2
-/-

 null lung bud explants shows reduced 

expression in the primitive ASM (C). In the presence of rFGF-10, there is increased 

SM22" expression in the SM layer surrounding the airways, and this expression pattern 

appears similar to that in Wnt2
+/+

 wildtype lung bud explants (compare B and D). Error 

bar indicates one standard deviation. *P < 0.05. N=8 lung bud explants. Scale bars=100 

µm (B-D). 
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Figure 2.11: Model of Wnt2 signaling in lung airway smooth muscle development. 
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Figure 2.11: Model of Wnt2 signaling in lung airway smooth muscle development. 

Wnt2 signaling in the primitive lung mesenchyme promotes the proliferation and 

differentiation of the PDGFR"/!-expressing multipotent mesenchyme into early-stage 

SMCs in part, by activating a myogenic transcriptional network including myocardin, 

SM22", and MRTFB. Wnt2 signaling also activates FGF-10 signaling, which further 

promotes amplification and differentiation of immature SMCs into an intermediate SMC 

type expressing mature ASM markers including SM22", SMA, and PDGFR".  
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Chapter 3: Wnt2/2b and !-catenin signaling are required for lung organogenesis 

This chapter has been published in Developmental Cell (Goss et al., 2009). 

 

Summary 

In Chapter 1, I gave an overview of mouse endoderm development and how 

progenitor specification within the foregut endoderm precedes organogenesis. However 

the molecular pathways that specify foregut endoderm progenitors in the mouse are 

poorly understood. The Wnt family of ligands comprises plausible candidates for 

mediating mouse foregut endoderm identity because of its prominent role in the 

development of multiple tissue types and spatiotemporal patterns of expression during 

foregut endoderm development. In this chapter, I show that Wnt2/2b signaling is required 

to specify lung endoderm progenitors within the anterior foregut. I also show that this 

phenotype is recapitulated by an endoderm restricted deletion of !-catenin, demonstrating 

that Wnt2/2b signaling through the canonical Wnt pathway is required to specify lung 

endoderm progenitors within the foregut. And finally, I show that activation of canonical 

Wnt/!-catenin signaling results in reprogramming of esophagus and stomach endoderm 

to a lung endoderm progenitor fate. Together, these data reveal that canonical Wnt2/2b 

signaling is uniquely required for specification of lung endoderm progenitors in the 

developing foregut.  
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Introduction 

As mentioned in Chapter 1, the vertebrate gut tube is patterned such that organs 

are specified in a precise spatial location along the anterior-posterior axis of the 

developing embryo. Signaling molecules expressed in the surrounding splanchnic 

mesoderm are thought to promote development and patterning of these organs including 

the thyroid, lung, liver, and pancreas, in part through proper specification of endoderm 

progenitors
42

. Although several important signaling pathways have been implicated in the 

regulation of foregut endoderm development, the pathways that uniquely specify the lung 

within the anterior foregut are unknown.   

Wnt signaling is one such pathway known to be important for early tissue 

morphogenesis. Multiple roles for !-catenin in cell proliferation and differentiation have 

been reported in the endodermal components of several tissues including the liver, 

pancreas, and lung 
191-196

. However, whether Wnt signaling plays a role in the 

specification of foregut derived tissues remains unclear.   

In this chapter, I show that Wnt2 and Wnt2b play an essential and cooperative 

role in specifying lung endoderm progenitors within the anterior foregut without affecting 

the specification of other foregut derived tissues. Moreover, I show that activation of 

Wnt/!-catenin signaling can reprogram posterior endoderm to a lung progenitor fate 

indicating the potent role of Wnt signaling in specifying early lung endoderm 

progenitors. These studies reveal a unique role for Wnt/!-catenin signaling in promoting 

lung endoderm specification in the foregut. 
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Results 

Expression of Wnt2 and Wnt2b during foregut development 

Previous studies have reported the expression of several Wnt ligands in the lung 

including Wnt2, Wnt5a, Wnt7b, and Wnt11 
97, 197

.  Given the importance of the Wnt 

pathway in endoderm development and regulation of tissue specific progenitors, the 

expression pattern of candidate Wnt ligands were explored to determine whether any 

were expressed in the appropriate spatial and temporal pattern to regulate development of 

lung endoderm progenitors in the foregut. The analysis revealed that from E9.0-E10.5, 

Wnt2 and Wnt2b are expressed in a highly restricted domain of the splanchnic mesoderm 

surrounding the ventral aspect of the anterior foregut when the lung is specified (Figure 

2.1A, B; Figure 3.1A, B). The Wnt2 expression pattern was described in Chapter 2 — 

briefly, Wnt2 is expressed in the splanchnic mesoderm at E9.0, and later at E11.5 

throughout the developing lung mesenchyme up through birth
141

. 

The expression of Wnt2b, like Wnt2, is upregulated at E11.5 in the developing 

lung mesenchyme (Figure 3.1C, D), although at lower levels and for a shorter duration 

than Wnt2 (compare Figure 2.1C, D with Figure 3.1C, D). Notably, the expression 

patterns of Wnt2/2b overlap spatially and temporally in the splanchnic mesoderm and 

lung mesenchyme (compare Figure 2.1A, B and Figure 3.1A, B), suggesting that both 

ligands function redundantly in these tissues. The spatial and temporal expression of 

Wnt2/2b in the splanchnic mesoderm also suggests that Wnt2/2b signaling regulates lung 

specification and development.  
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Loss of Wnt2 function leads to lung developmental defects and loss of Wnt2b 

function does not appear to impact lung development 

In Chapter 2, I described investigations examining the role of Wnt2 signaling in 

lung development using a Wnt2 loss-of-function knockout mouse model. Those results 

revealed that loss of Wnt2 function impaired proper lung development and led to 

perinatal mortality. To understand the functions of Wnt2b during lung development, 

Wnt2b
-/-

 null mutant mice were obtained from a collaborating laboratory. These mice 

were generated using homologous recombination to insert loxP sites flanking exons 2 and 

3 at the Wnt2b locus (Figure 3.2). To generate Wnt2b
-/-

 null mutant mice, Wnt2b 

conditional mutant mice were bred to the transgenic CMV-cre mouse line, which 

expresses a tissue wide cre recombinase. Interestingly Wnt2b
-/-

 null mutants are viable 

with no discernable lung phenotype, suggesting that Wnt2 is compensating and 

functioning redundantly with Wnt2b.  

 

The combined loss of Wnt2 and Wnt2b signaling leads to lung agenesis 

To address the combined role of Wnt2/2b signaling in lung development, the 

Wnt2 and Wnt2b knockout mice were interbred to generate Wnt2/2b double knockout 

(DKO) mutants. Histological examination of Wnt2/2b DKO mutants at E14.5 reveals 

complete lung agenesis with no signs of tracheal development (Figure 3.3D-F). In the 

absence of lung tissue, the atria of the developing heart fill the chest cavity. Interestingly, 

other foregut-derived tissues appear unperturbed in Wnt2/2b DKO mutants (Figure 3.3G-

Q). Histological sections indicate the presence of stomach, liver, pancreas, gut, and 

kidneys in Wnt2/2b DKO mutants (Figure 3.3N-Q) that are structurally comparable to 
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their counterparts in wild-type embryos (Figure 3.3J-M). These results demonstrate that 

Wnt2 and Wnt2b signal cooperatively in the splanchnic mesoderm to specifically mediate 

the development of the lung, but not the development of other foregut-derived organs. 

To understand whether an initial lung bud developed in Wnt2/2b DKO mutants, 

embryos were collected at earlier timepoints during lung development. At E11.5, while 

the esophagus and trachea are readily apparent in wild-type embryos (Figure 3.4A-C), 

neither lung nor tracheal development is observed in Wnt2/2b DKO mutants (Figure 

3.4D-F). Additionally, immunostaining of dissected foreguts with a pan-epithelial E-

cadherin antibody three dimensionally resolves the complete lack of tracheal budding in 

Wnt2/2b DKO mutants (Figure 3.4G, H). The whole mount immunostained tissue 

demonstrates that Wnt2/2b DKO mutants possess only a single endoderm tube, with no 

detectable ventral budding from the foregut. 

 

Loss of Wnt2/2b leads to the loss of lung endoderm progenitors 

The absence of tracheal budding suggests that there is a loss of lung progenitors in 

the ventral foregut endoderm of Wnt2/2b DKO mutants. To determine whether the lung 

endoderm lineage is specified in Wnt2/2b DKO mutants, embryos were collected at E9.5 

when the lung primordia is established in the foregut. Histological sections reveal that 

there is no detectable budding of the ventral endoderm in Wnt2/2b DKO mutants (Figure 

3.5A, E). Specification of the lung in the foregut was examined by immunostaining for 

Nkx2.1 expression in Wnt2/2b DKO mutant tissue. Recall from Chapter 1 that Nkx2.1 is 

a transcription factor that is the earliest known marker of the developing lung endoderm, 

and also denotes the thyroid primordia 
77, 198

. Nkx2.1 expression is first observed by 
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immunohistochemistry and in situ hybridization at E9.5 in the ventral aspect of the 

foregut, demarcating where the trachea will bud from the anterior foregut (Figure 3.5B) 

54, 144, 199
. Surprisingly, Nkx2.1 expression is absent in the anterior foregut region of 

Wnt2/2b DKO mutants (Figure 3.5F), confirming the loss of tracheal and lung 

development. Examining for Nkx2.1 expression along the anterior-posterior axis of 

Wnt2/2b DKO mutants demonstrates a specific loss of Nkx2.1 expression at the level of 

the presumptive tracheal bifurcation (Figure 2.3I-P). 

The thyroid primordium, which is anterior to the lung primordium, retains 

expression of Nkx2.1 (Figure 3.5C, G), indicating that Wnt2/2b signaling is not required 

for thyroid specification. The single endoderm tube in Wnt2/2b DKO mutants expresses 

the esophageal epithelial marker p63 (Figure 3.5D, H), demonstrating that the endoderm 

tube retains esophageal identity in the absence of tracheal and lung specification. Overall, 

these results suggest that Wnt2/2b signaling regulates the specification of lung 

progenitors in the foregut endoderm.  

 

Loss of lung progenitors is not due to aberrant cell proliferation or cell death in 

Wnt2/2b DKO mutant foreguts 

The loss of lung progenitors in the foregut endoderm could be attributed to cell 

proliferation defects and/or increased cell apoptosis. Ki67 immunostaining was 

performed in order to analyze the proliferation index of wild-type and Wnt2/2b DKO 

mutant foregut endoderm. Compared to wild-type foregut tissue (Figure 3.6A), there is 

no quantitative difference in proliferation in Wnt2/2b DKO mutants (Figure 3.6B, C). 

Additionally, TUNEL staining demonstrates that there is no increase in apoptosis in 
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Wnt2/2b DKO mutant foreguts over wild-type foreguts (Figure 3.6D, E). Therefore, the 

loss of lung endoderm progenitors in Wnt2/2b DKO mutants is not due to either 

decreased cell proliferation or increased cell death, suggesting that the loss stems directly 

from the absence of a specification event.  

 

Loss of lung gene expression in Wnt2/2b DKO mutants 

Several genes are reported to play critical roles in the development of foregut 

endoderm progenitors, with some specifically regulating lung progenitor development. 

Quantitative PCR on dissected foreguts from E10.5 embryos (Figure 3.6F) confirms the 

loss of Nkx2.1 expression in Wnt2/2b DKO foreguts. The minimal expression of Nkx2.1 

in Wnt2/2b DKO mutant foreguts is likely due to the presence of contaminating thyroid 

cells, which retain Nkx2.1 expression (Figure 3.5G). Foxa2 is a transcription factor 

expressed throughout the foregut endoderm, which contributes to foregut progenitor 

competence
200

. In situ hybridization for Foxa2 reveals expression in the foreguts of wild-

type tissue and Wnt2/2b DKO tissue (Figure 3.6G, H), indicating that foregut endoderm 

identity is not lost in the absence of Wnt2/2b signaling. 

The expression of Wnt7b, an additional marker of early lung endoderm 

progenitors in the anterior foregut 
134

, is also lost in Wnt2/2b DKO mutants. In situ 

hybridization demonstrates an absence of Wnt7b expression in the ventral foregut (Figure 

3.6I, J), and quantitative PCR also confirms this loss (Figure 3.6F). The residual Wnt7b 

expression in the Wnt2/2b DKO foreguts is likely due to other contaminating tissue types 

(e.g. the pancreas primordium)
61

.  
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Wnt2/2b DKO phenotype is distinct from other lung agenesis phenotypes 

The phenotype of Wnt2/2b DKO mutant embryos is not mimetic to other lung 

hypoplasia phenotypes, including the loss of Fgf10 and loss of Gli2/Gli3 expression, in 

that the lung is uniquely affected and specification is completely lost. Fgf10
-/-

 null 

mutants form a trachea which does not branch, indicating that the lung endoderm lineage 

is specified but fails to grow and branch 
68, 70

. Gli2/Gli3 double null mutants fail to form a 

lung, but other aspects of foregut development are severely affected, including the loss of 

the esophagus 
72

. To develop a hierarchical model of lung specification, expression of 

Fgf10, Gli2, and Gli3 was assessed to determine whether their expression was affected by 

the loss of Wnt2/2b signaling.   

In situ hybridization on Wnt2/2b DKO mutant tissue reveals reduced expression 

of Fgf10 (Figure 3.6K, L), suggesting that Fgf10 expression is downstream of Wnt 

signaling in the anterior foregut. Although our laboratory has demonstrated that Fgf10 is 

a direct target of Wnt/!-catenin signaling in cardiac mesoderm 
189

, it remains possible 

that loss of Fgf10 expression is secondary to a loss of lung specification.  In contrast to 

the loss of Fgf10 expression, Gli2 and Gli3 expression were unchanged in the anterior 

foregut region of Wnt2/2b DKO mutants. In situ hybridization shows comparable Gli3 

expression levels between wild-type and Wnt2/2b DKO mutant tissue (Figure 3.6M, N), 

and quantitative PCR indicates no change in Gli2 or Gli3 expression in Wnt2/2b DKO 

mutant foreguts (Figure 3.6F). Together, these data suggest that Wnt2/2b signaling acts 

upstream of Fgf10, but not Gli2/Gli3 in the regulation of lung specification.  
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Wnt2 and Wnt2b signal through the !-catenin-dependent canonical pathway in the 

primitive lung endoderm 

Wnt ligands can signal through several distinct pathways to regulate cell 

specification and tissue development. The best understood of these is the !-catenin 

dependent canonical pathway, which has been demonstrated to regulate development and 

differentiation of several tissues including hair follicles, intestinal epithelium, and the 

heart 
189, 201, 202

. To assess whether the canonical Wnt pathway was affected by the loss of 

Wnt2/2b, we crossed the BAT-GAL canonical Wnt reporter line 
113

 to Wnt2/2b DKO 

mutants and performed lacZ staining in wild-type BAT-GAL embryos, Wnt2
-/-

:BAT-GAL, 

Wnt2b
-/-

:BAT-GAL, and Wnt2/2b:BAT-GAL DKO null mutants.   

LacZ expression from the BAT-GAL Wnt reporter line is reduced in Wnt2
-/-

 null 

mutant foreguts (Figure 3.7A-D), suggesting that Wnt2 signals through !-catenin in the 

foregut endoderm. These data complement the BAT-GAL data presented in Chapter 2 

(Figure 2.4E, F), which demonstrated that Wnt2 signals through !-catenin in the lung 

mesenchyme at later developmental stages. LacZ expression is also reduced in Wnt2b
-/-

 

null mutants (Figure 3.7E), and is absent in the anterior foregut endoderm in Wnt2/2b 

DKO mutants (Figure 3.7F). The loss of !-catenin activity in the foregut endoderm upon 

the combined loss of Wnt2 and Wnt2b suggests that Wnt2/2b signal through !-catenin in 

the foregut. Therefore, these data placed into context with the Wnt2/2b DKO lung 

agenesis phenotype suggest a critical role for !-catenin signaling in mediating lung 

progenitor development in the foregut. 

To further address whether canonical Wnt/!-catenin signaling is necessary in the 

developing foregut endoderm for lung specification, I utilized a commercially available 
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mouse line that expresses cre recombinase throughout the foregut endoderm to modulate 

!-catenin signaling activity. The mouse line harbors a gene encoding a gfp-cre 

recombinase fusion protein, which has been inserted at the Sonic hedgehog (Shh) locus 

through homologous recombination
203

. As a knock-in model, cre recombinase expression 

should faithfully recapitulate the temporospatial dynamics of Shh promoter activity in the 

developing endoderm. To confirm the fidelity of the mouse model as a tool, Shh-cre 

heterozygous mice were bred to the cre-dependent lacZ mouse reporter strain, ROSA26 

204
. Lineage mapping in Shh-cre:R26R embryos demonstrates cre activity in the foregut 

endoderm at E8.75 (Figure 3.7G), just prior to lung specification, and at E9.25 in the 

tracheal bifurcation at the onset of lung specification (Figure 3.7H, I-K). Slightly later at 

E11.5, there is cre activity in the tracheal endoderm that extends throughout the primitive 

endoderm of the lung, stomach, and gut (Figure 3.7L-O).  

 

!-catenin signaling is necessary for lung progenitor specification in the foregut 

endoderm 

To test whether !-catenin signaling activity contributes to lung progenitor 

development, the !-catenin gene (Ctnnb1) was genetically deleted using the Shh-cre 

mouse line in conjunction with a mouse line carrying conditional alleles of !-catenin
205

. 

Immunostaining for !-catenin protein expression demonstrates !-catenin gene excision 

as denoted by the absence of !-catenin protein in E9.5 Ctnnb1
flox/flox

:Shh-cre mutant 

foreguts (Figure 3.8I, J). Interestingly, Ctnnb1
flox/flox

:Shh-cre mutants exhibit a 

histological phenotype identical to Wnt2/2b DKO mutants. Histological sections 

demonstrate a complete lack of tracheal budding in Ctnnb1
flox/flox

:Shh-cre mutants (Figure 
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3.8E-G). Whole mount E-cadherin immunostaining confirms the loss of tracheal and lung 

bud formation in Ctnnb1
flox/flox

:Shh-cre mutants (Figure 3.8O, P).  

Additionally, there is a complete loss of Nkx2.1 expression in the ventral foregut 

at the site of the presumptive tracheal bifurcation (Figure 3.8H). However, specification 

of other gut-derived tissues including the esophagus and thyroid is unaffected (Figure 

3.8M, N). Immunostaining for p63 expression indicates that the single endoderm tube in 

Ctnnb1
flox/flox

:Shh-cre mutants retains esophageal identity (Figure 3.8K, L). Overall, these 

data demonstrate that !-catenin signaling in the foregut endoderm is required to specify 

lung endoderm progenitors. 

 

Activation of Wnt/!-catenin signaling leads to reprogramming of the posterior 

foregut endoderm to a lung endoderm fate 

The potent role for Wnt/!-catenin signaling in specifying lung endoderm 

progenitors suggested that ectopic activation of this pathway might promote expansion of 

lung endoderm progenitor identity outside the normal region in the foregut. To test this 

hypothesis, the Shh-cre mouse line was crossed with the Ctnnb1
(ex3)flox

 mouse line to 

generate Ctnnb1
(ex3)flox

:Shh-cre mutants. These mutants will express the stabilized form of 

!-catenin lacking the phosphorylation sites required for !-catenin degradation, thereby 

leading to strong activation of Wnt/!-catenin signaling 
206

. At E10.5, Ctnnb1
(ex3)flox

:Shh-

cre mutants display defects in tracheal-esophageal septation (Figure 3.9E, F), and 

immunostaining reveals expansion of Nkx2.1 positive lung progenitors into the hindgut 

region, corresponding to the primitive stomach endoderm (Figure 3.9H).  This expansion 
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is also evident at E11.5 in Ctnnb1
(ex3)flox

:Shh-cre mutants, where the esophagus and 

proximal stomach are populated with Nkx2.1 positive lung progenitors (Figure 3.9O, P).   

To determine whether this expansion of Nkx2.1 lung progenitors represents a 

reprogramming of foregut endoderm or an increase in Nkx2.1 expression in esophagus 

and stomach endoderm, p63 immunohistochemistry was performed on E11.5 wild-type 

and Ctnnb1
(ex3)flox

:Shh-cre mutants. These data show that p63 expression is lost in the 

esophagus and proximal stomach of Ctnnb1
(ex3)flox

:Shh-cre mutants (Figure 3.9R, T). 

Moreover, co-immunostaining for p63 and Nkx2.1 on Ctnnb1
(ex3)flox

:Shh-cre mutant 

foregut sections demonstrates the lack of co-expression of Nkx2.1 and p63 in esophageal 

endoderm cells (Figure 3.9V), suggesting that activation of Wnt/!-catenin signaling 

reprograms esophagus and stomach endoderm to a lung endoderm progenitor fate. 

Altogether, these data indicate that activation of Wnt/!-catenin signaling reprograms 

posterior regions of the foregut endoderm to a lung endoderm progenitor fate, suggesting 

that activation of this pathway drives lung endoderm specification in a dominant manner.   

In conclusion, this work describes a model of Wnt2/!-catenin dependent activity 

as the required signal for specification of lung endoderm progenitors within the foregut 

(Figure 3.10). Loss of Wnt2/2b expression, or !-catenin signaling, disrupts lung 

progenitor specification leading to lung agenesis in the mouse. Conversely, dominant 

activation of !-catenin signaling promotes the expansion of lung progenitor specification 

outside of the normal foregut endoderm domain. 
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Discussion 

Mutations in several genes have resulted in either a severe truncation in lung 

development (i.e. Fgf10
-/- 

null mutants), or defects in the splanchnic mesoderm leading to 

severe foregut agenesis including the lung and esophagus (i.e. Gli2/Gli3 double mutants) 

70, 72
. In this chapter, I show that Wnt2/2b are distinct in their ability to specify lung 

progenitors within the developing foregut, whereas they are expendable in the 

specification of other organs including the thyroid, esophagus, liver, and pancreas. 

Furthermore, I show that activation of canonical Wnt signaling can reprogram esophagus 

and stomach endoderm to a lung progenitor fate. These data support the importance of 

mesoderm to endoderm signaling that promotes development of foregut derived tissues, 

and extends these findings to provide a molecular hierarchy of foregut endoderm 

specification.   

Previous reports have elucidated additional roles for Wnt signaling in the 

developing lung. Loss of !-catenin or expression of the Wnt inhibitor dikkopf1 (Dkk1) in 

lung epithelium after lung specification leads to decreased distal airway epithelial 

development and an overall proximalization of the lung 
191, 192

.  A Dermo1-cre 

mesenchymal specific loss of !-catenin in the lung leads to defective lung mesenchymal 

proliferation and development 
117, 207

. A previous report on a different Wnt2 allele did not 

report a lung phenotype although approximately 50% of null animals died by birth. This 

could be explained by the presence of significant levels of a truncated Wnt2 mRNA 

species observed in this previous allele 
141

.   

Expression of several other Wnt ligands besides Wnt2 and Wnt2b has been 

reported in the lung including Wnt7b and Wnt5a 
97, 197

. Wnt7b has been shown to 
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regulate mesenchymal proliferation as well as epithelial proliferation and maturation 
134, 

139
. Wnt5a is expressed initially in both the mesenchyme and distal epithelium of the 

developing lung, and loss of Wnt5a leads to increased mesenchymal proliferation and a 

loss in late airway maturation 
97

. Since Wnt5a has been reported to act in the non-

canonical Wnt pathway 
208

, which can antagonize !-catenin dependent canonical 

signaling, the increased proliferation observed in the lung mesenchyme of Wnt5a mutants 

could be due to increased canonical Wnt signaling in this tissue. The present study shows 

that in addition to regulation of lung development and growth, Wnt signaling through 

Wnt2/2b is essential for specification of lung endoderm progenitors in the foregut.   

In contrast to previous studies in zebrafish which demonstrated an important role 

for wnt2b in liver development and specification as well as fin development, these data 

show that Wnt2/2b are not required for mammalian liver specification 
48, 209

. The studies 

described here suggest that the role for Wnt/!-catenin signaling along the anterior-

posterior axis of the foregut varies between species, which may have occurred as 

Wnt2/2b and the canonical Wnt pathway were co-opted during evolution to specify the 

lung during the vertebrate expansion into the terrestrial environment. The specificity for 

Wnt signaling, in particular Wnt2 and Wnt2b, in regulating specification of the lung is 

interesting in light of previous reports showing an important role for this pathway in 

pancreas and liver development 
193-196

. This may be due to the precise expression pattern 

of these two Wnt ligands or to an important sensitivity of lung endoderm progenitors to 

canonical Wnt signaling. Moreover, the phenotype in Ctnnb1
(ex3)flox

:Shh-cre mutants is 

likely due to the timing and specificity of the Shh-cre line since we do not observe early 

activity in the liver (Figure 3.7O).   
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It is also important to note that since Fgf10 is a direct target of Wnt/!-catenin 

signaling 
189

, the ability of Wnt2/2b to regulate its expression in the mesoderm 

surrounding the anterior foregut in a cell autonomous manner could affect other pathways 

important for mesoderm-endoderm signaling during lung development.  Given the critical 

importance of Wnt2/2b signaling in lung endoderm specification, it will be interesting in 

future studies to determine whether simple activation of Wnt signaling can rescue the 

Wnt2/2b phenotype in foregut endoderm. Previous reports have shown that Wnt/!-

catenin signaling is also important in adult lung progenitor expansion after injury 
164, 210

. 

Thus, Wnt signaling plays a key role in embryonic as well as adult lung endoderm 

progenitor development, which reinforces the importance of understanding critical 

developmental pathways that are recapitulated upon injury and repair.   

Wnt/!-catenin signaling is a critical developmental pathway considered to be 

important for both self-renewal and differentiation of stem/progenitor cells. With 

vigorous efforts underway to determine whether agonists or antagonists can be used to 

manipulate this pathway for therapeutic purposes, our findings that Wnt signaling is 

central to lung endoderm specification and has the ability to reprogram foregut endoderm 

to a lung endoderm fate provides important information for investigating lung 

regeneration.  In summary, these data provide a molecular hierarchy of foregut endoderm 

progenitor specification with Wnt2/2b signaling acting dominantly to specify lung 

endoderm progenitors in the anterior foregut.   
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Materials and Methods 

Mice 

 The generation of the Wnt2 mutant mice was described in Chapter 2. Wnt2b 

mutant mice were generated using recombineering techniques to insert loxP sites flanking 

exons 2 and 3. Successfully targeted ES cells were used to generate chimeric mice that 

were bred to transmit these mutant alleles through the germline. Wnt2b mutants were 

crossed to CMV-cre mice to delete exons 2 and 3 and generate a null allele. The Wnt2b 

locus still carries the neomycin selection gene cDNA from the original targeted ES cell. 

Both lines were maintained on a C57BL/6:129SVJ mixed background. The generation 

and genotyping of Shh-cre, Ctnnb1
flox/flox

, BAT-GAL, and Ctnnb1
ex3flox

 mice have been 

previously described
113, 203, 205, 206

. The University of Pennsylvania Institutional Animal 

Care and Use Committee approved all animal protocols. Genotyping primer sequences 

are as follows: 

Wnt2b
neo

: 

Wnt2bForward (5’ AGCTCTTTGTCGGTGGAGGTAAAGG 3’) 

Wnt2bReverse (5’CGGCTGATGGGTAGAACCATTACCT 3’) 

Wnt2bNeoReverse (5’ATCAGCAGCCTCTGTTCCACATAC 3’) 

Histology  

Embryos were fixed in 4% paraformaldehyde for 24 hours, dehydrated in a series of 

ethanol washes, and then embedded in paraffin for tissue sectioning. Dissected 

embryonic lung buds and foreguts were fixed in 4% paraformaldehyde overnight, 

dehydrated in a series of methanol washes, and blocked in a 10% normal goat serum/PBS 

solution before whole mount immunostaining. In situ hybridization and 
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immunohistochemistry was performed as previously described
190

. Tissue sections were 

stained with the following antibodies and dilutions: anti-!-catenin (BD Transduction, 

1:100), anti-E Cadherin (Sigma, 1:50), anti-Ki67 (Vector Laboratories, 1:50), anti-

Nkx2.1 (Santa Cruz, 1:50), anti-p63 (Santa Cruz, 1:50). Quantification of positive cell 

populations was performed using at least three different tissue sections from at least three 

different embryos of the same genotype. LacZ histochemical staining of embryos was 

performed as previously described
134

. TUNEL staining was performed as previously 

described
211

. 

Quantitative RT-PCR  

Total RNA was isolated from lung tissue at the indicated time points using Trizol 

reagent, reverse transcribed using SuperScript First Strand Synthesis System (Invitrogen), 

and used in quantitative real time PCR analysis using the oligonucleotides listed below.  

Gli2 

F (5’ CGGAAGGTTGAAGGCATTGA 3’) 

R (5’ GTTTCCACATGCCATTTCTTATCTG 3’) 

Gli3 

F (5’ CCACTGTCAGATCATAGCTTCGA 3’) 

R (5’ CTTGCCGATAAGTGCCCATAG 3’) 

Nkx2.1 

F (5’ CTTCATCTTTCCCCCCTTCCT 3’) 

R (5’ GGTTGAATTTGCTTGGCTGTTT 3’) 

Wnt7b 

F (5’ GGATGCCCGTGAGATCAAAA 3’) 
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R (5’ CACACCGTGACACTTACATTCCA 3’) 
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Figure 3.1: Expression pattern of Wnt2b during lung development. 
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Figure 3.1: Expression pattern of Wnt2b during lung development. 

(A-D) In situ hybridization for Wnt2b expression on wild-type embryo cross-sections. (A, 

B) Wnt2b is expressed in the splanchnic mesoderm flanking the ventral domain of the 

mouse foregut endoderm from E9.0-E9.5. (C, D) From E12.5-E14.5, Wnt2b expression is 

observed in the mesothelium encasing the lung and at lower levels in the distal 

mesenchyme. After E14.5, Wnt2b expression is downregulated. Both Wnt2 and Wnt2b 

exhibit overlapping spatiotemporal patterns of expression (see Figure 2.1 for Wnt2 

expression pattern). Scale bars=200 µm (A, B), 600 µm (C, D). 
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Figure 3.2: Wnt2b gene targeting strategy. 
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Figure 3.2: Wnt2b gene targeting strategy. 

(A) Schematic of the Wnt2b gene targeting strategy with a representative Southern blot 

using the indicated probe and an Xba1 digest (B). A conditional knockout of the Wnt2b 

gene was generated by homologous recombination to insert loxP sites flanking exons 2 

and 3. Wnt2b mutant alleles (Wnt2b#/#) were generated by mating the Wnt2b conditional 

mutants to transgenic mice expressing a tissue-wide cre recombinase under a minimal 

promoter (CMV-cre).  
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Figure 3.3: Loss of both Wnt2 and Wnt2b results in lung agenesis. 
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Figure 3.3: Loss of both Wnt2 and Wnt2b results in lung agenesis. 

H+E staining of histological cross-sections from E14.5 wild-type (A-C, G, J-M) and 

Wnt2/2b double knockout (DKO) mutant embryos (D-F, H, I, N-Q). (D-F) Wnt2/2b DKO 

mutants exhibit lung agenesis, however, specification of other foregut-derived organs is 

not affected in Wnt2/2b DKO mutants (H, I). As with wild-type histological cross-

sections E14.5 (G), Wnt2/2b DKO mutants develop a stomach (St), liver (Li), pancreas 

(Pa), kidney (Ki), and intestine (Gt) (H and I).  Higher magnification pictures show 

relatively normal architecture of these and other gut-derived organs in both wild-type (J-

M) and Wnt2/2b DKO mutants (N-Q).  Scale bars=800 µm (A-I), 400 µm (J-Q). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

106 

Figure 3.4: Loss of Wnt2 and Wnt2b leads to tracheoesophageal defects and loss of  

 

tracheal budding. 
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Figure 3.4: Loss of Wnt2 and Wnt2b leads to tracheoesophageal defects and loss of 

tracheal budding. 

H+E staining of histological cross-sections from E11.5 wild-type (A-C) and Wnt2/2b 

DKO mutant embryos (D-F). Posterior to the laryngotracheal groove (pictured in A and 

D), Wnt2/2b DKO mutants do not exhibit septation of the trachea and esophagus (E, F).  

In contrast, a clear separation of the esophagus (B and C, arrow) from the trachea (B and 

C, arrowhead) is observed in wild-type embryos. (G, H) E-cadherin whole mount 

immunostaining of endoderm dissected from wild-type (G) and Wnt2/2b DKO (H) shows 

lack of tracheal budding from the foregut in Wnt2/2b DKO mutants (G and H, arrows and 

brackets). Scale bars=200 µm (A-F). 
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Figure 3.5: Loss of Wnt2 and Wnt2b results in the loss of lung progenitor  

 

specification. 
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Figure 3.5: Loss of Wnt2 and Wnt2b results in the loss of lung progenitor 

specification. 

Histological cross-sections of E9.5 wild-type (A-C) and Wnt2/2b DKO mutant embryos 

(E-G). (A, E) At E9.5, when the lung is initially specified, there is no detectable budding 

of the trachea from the anterior foregut in Wnt2/2b DKO mutants. (B, C, F, G) 

Immunostaining for Nkx2.1 shows that wild-type embryos express Nkx2.1 in the region 

where the trachea will bud from the foregut (B), however expression is not observed in 

Wnt2/2b DKO mutants (F, outline). Nkx2.1 expression is observed in both wild-type (C) 

and Wnt2/2b DKO mutants (G) in the thyroid primordium. Immunostaining for the 

esophagus epithelial marker p63 on E11.5 wild-type (D) and Wnt2/2b DKO mutant 

embryos (H) demonstrates expression in the single gut tube in Wnt2/2b DKO mutants at 

E11.5 (D and H, arrows). Serial cross-sections through E9.5 wild-type (I-L) and Wnt2/2b 

DKO mutant embryos (M-P) confirm lack of Nkx2.1 expression in the foregut endoderm 

of Wnt2/2b DKO mutants.  Panels K and O correspond to panels B and F, respectively.  

Scale bars=100 µm (A-H), 250 µm (I-P). 
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Figure 3.6: Cell proliferation, apoptosis, and lung gene expression in Wnt2/2b DKO  

 

mutant foreguts. 
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Figure 3.6: Cell proliferation, apoptosis, and lung gene expression in Wnt2/2b DKO 

mutant foreguts. 

Histological cross-sections of E9.5 wild-type (A, D) and Wnt2/2b DKO mutant embryos 

(B, E). (A-C) Proliferation as measured by Ki-67 immunostaining is unchanged in the 

foregut endoderm of E9.5 Wnt2/2b DKO mutants (outlined region). (D, E) TUNEL 

staining does not indicate an increase in apoptotic cells in Wnt2/2b DKO mutant foreguts 

(outlined region). (F) Quantitative PCR performed on dissected foreguts of Wnt2/2b 

double heterozygous (DHET) and Wnt2/2b DKO mutants for Nkx2.1, Wnt7b, Gli2, and 

Gli3 expression.  Wnt2/2b double heterozygous mutants were used as controls since they 

were the only non-DKO controls obtained in all three litters used to generate this tissue. 

(G-N) In situ hybridization on wild-type and Wnt2/2b DKO mutant embryo cross-

sections at the denoted embryonic timepoints. (G, H) Foxa2 expression is unchanged in 

Wnt2/2b DKO mutant embryos. (I, J) Wnt7b expression, which marks early lung 

endoderm progenitors in the ventral aspect of the foregut (arrow) versus the dorsal aspect 

(dashed arrow), is lost in E10.0 Wnt2/2b DKO foregut endoderm. (K, L) Fgf10 

expression is reduced in the ventral mesoderm surrounding the foregut in Wnt2/2b DKO 

mutants. (M, N) Gli3 expression is unchanged in Wnt2/2b DKO mutants. Error bars 

indicate one standard deviation. Scale bars=200 µm (A, B, D, E, G, H, K, L), 100 µm (I, 

J, M, N). 
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Figure 3.7: Wnt2/2b signal through the !-catenin-dependent canonical pathway in  

 

the primitive lung endoderm. 
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Figure 3.7: Wnt2/2b signal through the !-catenin-dependent canonical pathway in 

the primitive lung endoderm. 

(A, B) Whole mount lacZ staining of Wnt2
-/-

:BAT-GAL embryos shows a decrease in 

canonical Wnt signaling in the anterior foregut at E10.5 (A and B, arrows).  (C-F) 

Histological cross-sections of lacZ-stained wild-type BAT-GAL, Wnt2
-/-

:BAT-GAL, 

Wnt2b
-/-

:BAT-GAL, and Wnt2/2b:BAT-GAL DKO mutant embryos show a loss of lacZ 

expression in the ventral aspect of the foregut endoderm in the region where the trachea 

is specified (brackets). (G-O) Lineage tracing of the Shh-cre line. Shh-cre:R26R embryos 

were stained at E8.75 (G) and E9.25 (H) to show cre recombinase activity in the anterior 

foregut (arrows).  (I-K) Cross-sections of E9.25 Shh-cre:R26R embryos shows lacZ 

expression in the thyroid primordium (TP, floor plate (FP), notochord (NC), and the 

ventral aspect of the foregut endoderm. (L-O) Cross-sections of an E11.5 Shh-cre:R26R 

embryo shows lacZ expression in the thyroid primordium (TP), pharyngeal endoderm 

(PE), esophagus (eso), trachea (tra), endoderm of the lung buds (lb), and the endoderm of 

the stomach (sto) and hindgut (gut). LacZ expression is absent in the early liver (li) (O). 

D=dorsal, V=ventral. Scale bars=100 µm (C-F, I-N), 200 µm (O). 
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Figure 3.8: Wnt2/2b signal through !-catenin-dependent pathways to specify lung  

 

progenitors in the foregut endoderm. 
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Figure 3.8: Wnt2/2b signal through !-catenin-dependent pathways to specify lung 

progenitors in the foregut endoderm. 

(A-H) Histological cross-sections from E10.5 wild-type (A-D) and Ctnnb1
flox/flox

:Shh-cre 

mutant embryos (E-H). H+E stained cross-sections show that genetic deletion of foregut 

endoderm !-catenin expression leads to tracheoesophageal defects and absence of lung 

development in Ctnnb1
flox/flox

:Shh-cre mutants (E-G).  (D, H) Nkx2.1 immunostaining 

demonstrates expression in the ventral foregut endoderm of wild-type embryos (D), but 

Nkx2.1 expression is lost in Ctnnb1
flox/flox

:Shh-cre mutants (H), indicating a loss of lung 

specification in these mutants. (I, J) Immunostaining for !-catenin expression in 

Ctnnb1
flox/flox

:Shh-cre mutants at E9.5 shows reduced expression of !-catenin in the 

ventral portion (V) of the anterior foregut (J), confirming !-catenin gene excision. (K, L) 

p63 immunostaining shows that the foregut tube in Ctnnb1
flox/flox

:Shh-cre mutants (L) 

retains esophagus identity at E9.5. (M, N) Nkx2.1 immunostaining at E9.5 shows that 

thyroid (TP) specification is retained in Ctnnb1
flox/flox

:Shh-cre mutants (N) in tissue 

anterior to the presumptive site of the tracheal bifurcation. (O, P) E-cadherin whole 

mount immunostaining shows normal tracheal budding in wild-type embryos (O, arrow) 

and lack of tracheal budding in Ctnnb1
flox/flox

:Shh-cre mutants (P, arrow).  The esophagus 

is still present in the Ctnnb1
flox/flox

:Shh-cre mutants (P’, bracket). D=dorsal, 

Es=esophagus, Tr=trachea, TP=thyroid primordium, V=ventral.  Scale bars=200 µm (A-

H), 100 µm (I-K), 50 µm (M, N).  
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Figure 3.9: Activation of Wnt/!-catenin signaling leads to expansion of lung  

 

endoderm progenitors into the stomach. 
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Figure 3.9: Activation of Wnt/!-catenin signaling leads to expansion of lung 

endoderm progenitors into the stomach. 

Histological cross-sections of E10.5 wild-type (A-D) and Ctnnb1
(ex3)flox

:Shh-cre mutant 

embryos (E-H). H+E stained cross-sections show that trachea-esophagus septation is 

disrupted in Ctnnb1
(ex3)flox

:Shh-cre mutants (F, arrowheads). (D, H) Immunostaining for 

Nkx2.1 expression reveals expansion of Nkx2.1 positive lung endoderm progenitors into 

the stomach (St, outlined region). (I-N) H+E stained cross-sections from E11.5 wild-type 

(I and J) and Ctnnb1
(ex3)flox

:Shh-cre (M and N) mutant embryos. (K-P) Immunostaining 

for Nkx2.1 expression shows expression of Nkx2.1 in the esophagus of E11.5 

Ctnnb1
(ex3)flox

:Shh-cre mutants (O, arrow), but not in wild-type embryos (K, arrow).  

Expression of Nkx2.1 is also extended into the stomach of E11.5 Ctnnb1
(ex3)flox

:Shh-cre 

mutants (P, arrows). (Q-T) Immunostaining for p63 expression shows reduced expression 

in the esophagus and stomach endoderm of E11.5 Ctnnb1
(ex3)flox

:Shh-cre mutants (R, T).  

(U-V) Co-immunostaining for both Nkx2.1 and p63 expression shows that p63-positive 

endoderm is lost (V’) while Nkx2.1-positive endoderm is present in the esophagus (V, 

arrow). E=esophagus, Lb=lung bud, St=stomach.  Scale bar=200 µm (A-I, M, K, O, Q, R, 

U-V), 400 µm (J, N, L, P), 30 µm (S, T). 
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Figure 3.10: Model of Wnt2/Wnt2b and !-catenin signaling for lung progenitor  

 

specification in the foregut endoderm. 
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Figure 3.10: Model of Wnt2/Wnt2b and !-catenin signaling for lung progenitor 

specification in the foregut endoderm. 

Model showing necessity and sufficiency of Wnt2/2b and !-catenin signaling for lung 

progenitor specification in the anterior foregut endoderm. Wnt2 and Wnt2b expression in 

the splanchnic mesoderm signals in a paracrine manner to the adjacent foregut endoderm 

activating !-catenin signaling to specify lung endoderm progenitors. Loss of either 

Wnt2/Wnt2b expression in the mesoderm, or !-catenin signaling in the foregut 

endoderm, leads to the loss of lung endoderm progenitors and lung agenesis. Moreover, 

dominant activation of !-catenin signaling in the endoderm leads to the expansion of lung 

progenitors into the presumptive stomach. 
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Chapter 4: Conclusions and Future Directions 

 

Summary 

Lung development is a complex process involving input from multiple signaling 

pathways to coordinate specification, morphogenetic, and differentiation events. The Wnt 

signaling pathway indisputably plays a critical role in lung development, given the 

reported lung defects in several Wnt knockout and !-catenin conditional mutant mouse 

models. However, the contributions of individual Wnt ligands and canonical Wnt/!-

catenin signaling to the specification and development of respiratory cell types have not 

been fully addressed. Wnt ligands are secreted molecules that can activate downstream 

signaling pathways in cell-autonomous and non-cell autonomous manners. An important 

theme in the development of organs is the necessity for cross-talk between different 

tissue types, such as the developing lung mesenchyme and endoderm. Wnts as 

intercellular ligands can act upon multiple tissues, thereby adding complexity to their 

functions during the development of organs. The two roles identified for Wnt2 signaling 

in this thesis reflect the dual autocrine and paracrine signaling capabilities of Wnt 

ligands.  

In this dissertation, I analyze a series of mouse models to determine the function 

of Wnt2 signaling in lung development. These studies reveal two distinct roles for Wnt2 

signaling during lung development: one in the splanchnic mesoderm flanking the site of 

lung specification in the foregut endoderm, and a second role in the developing lung 

mesenchyme.  
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In Chapter 2, I describe a role for Wnt2 signaling in the development of the lung 

mesenchyme. I show that Wnt2 signaling is required for overall lung growth and 

development of airway smooth muscle. Additionally, I place Wnt2 signaling as an 

upstream regulator in a hierarchy of smooth muscle development. I show that Wnt2 

signaling promotes the activation of an early smooth muscle transcriptional regulatory 

network that supports the development of immature smooth muscle. I also show that 

Wnt2 signaling activates downstream FGF-10 signaling, a pathway well known to 

promote the development of airway smooth muscle.  

In Chapter 3, I elaborate my investigations into the functions of Wnt2 signaling 

by studying the cooperativity between Wnt2 and its associated family member-Wnt2b, 

which is co-expressed with Wnt2 in the lung. My studies reveal that both ligands signal 

cooperatively in the splanchnic mesoderm tissue prior to lung morphogenesis to regulate 

the specification of lung progenitors in the foregut endoderm. The combined loss of 

Wnt2/2b function results in the complete loss of the lung, and this loss is tightly restricted 

to the lung field in the foregut. I also demonstrate that Wnt2 and Wnt2b mediate their 

effects on the endoderm via activation of !-catenin signaling in the foregut, and that an 

endoderm-specific loss of !-catenin recapitulates the lung agenesis phenotype. 

In contrast to previous reports, these results demonstrate that Wnt2 signaling is 

critical for lung development. The data collected from these investigations establishes a 

firm understanding of what processes Wnt2 and Wnt2b coordinate during embryonic 

development. The data also prompts additional questions concerning the roles of Wnt2 

and !-catenin signaling in both the embryonic and adult lung. 
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Future Directions 

 

What cell lineages are Wnt2-expressing cells contributing to during lung 

development? 

 The data presented in Chapter 2 on the Wnt2 loss-of-function model suggest that 

Wnt2 signaling is having a critical impact on the development of smooth muscle in the 

lung. However, this result does not definitely establish whether Wnt2-expressing cells are 

giving rise to smooth muscle lineages only, or to other mesenchymal lineages in the 

mouse lung.  

To better understand the lineage contributions of Wnt2-expressing cells, our 

laboratory has recently generated a tamoxifen-inducible knock-in Wnt2
cre/ERT2

 allele 

(Figure 4.1). This allele carries a tamoxifen-inducible cre recombinase cDNA cassette 

homologously inserted at the Wnt2 locus. This allele will permit conditional fatemapping 

of Wnt2-expressing cells during lung development based on the endogenous activity of 

the Wnt2 promoter. An initial experiment testing for cre recombinase activity using the 

Rosa26 reporter mouse strain indicates that the allele is activated in lung tissue; however, 

the efficiency of cre recombinase-mediated excision is still unclear and the tamoxifen 

induction method is being optimized. Use of this genetic tool will enable us to more 

thoroughly study and define the contribution and behavior of Wnt2-expressing cells in the 

lung.  

It will be very interesting to see whether fatemapping in the Wnt2
cre/ERT2

 mouse 

model demonstrates that Wnt2-expressing cells contribute to smooth muscle in the lung. 

Additionally, it will also be of interest to see whether Wnt2-expressing cells contribute to 
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both vascular and smooth muscle cells. Wnt2 signaling is reported to mediate endothelial 

gene expression in embryoid bodies
142

, and there are subtle molecular deficiencies during 

early endothelial development in Wnt2
-/-

 null mutant lungs (see Chapter 2). Therefore it is 

possible that subpopulations of Wnt2-expressing cells contribute to the developing 

endothelium, and this will be revealed through fatemapping. The fatemapping studies 

may also reveal additional lineage contributions of Wnt2-expressing cells in the 

mesenchyme. Finally, fatemapping in the Wnt2
cre/ERT2 

model may also serve as an 

additional tool to study the behaviors of Wnt2-expressing cells (e.g. migration, EMT) in 

the context of reduced Wnt2 signaling, other genetic deficiencies, or during lung injury 

and repair. 

The reported Wnt2 expression data indicates that Wnt2 is expressed in the 

developing lung mesenchyme
141, 143, 159

. However the expression data is based on in situ 

hybridization experiments, and does not exclude the possibility that Wnt2 is expressed at 

low levels in the developing lung epithelium. Preliminary data indicate that Wnt2 is 

expressed at low levels in the postnatal airway epithelium (discussed below), and is 

highly upregulated after airway injury (Figure 4.2). The expression of Wnt2 in the adult 

epithelium suggests the possibility for the presence of Wnt2-expressing cells in the 

developing epithelium. Thus, the Wnt2
cre/ERT2 

model may reveal a previously unknown 

site of Wnt2 expression in the embryonic lung. 

A role for Wnt2 signaling in asthma? 

Recent studies show upregulation of Wnt/!-catenin signaling in airway smooth 

muscle in a mouse model of allergen-induced asthma
22, 212

. Given the prominent role 

described in Chapter 2 for Wnt2 signaling in airway smooth muscle development, it will 
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be interesting to look at whether Wnt2 expression is activated in airway smooth muscle in 

an asthmatic model. To investigate further and genetically determine whether Wnt2 

signaling is activated during asthma, the Wnt2
cre/ERT2

 fatemapping model could be utilized 

in the induced asthma model and analyzed for Wnt2 signaling activity. Additionally, the 

contribution of Wnt2-expressing cells to the asthmatic phenotype can be analyzed, 

including airway smooth muscle proliferation.  

Is Wnt2 mediating its effects via cross-talk with the adjacent epithelium? 

 Epithelial-mesenchymal interactions are integral to the development of many cells 

types in the lung. Studies have shown that disruption of Wnt7b signaling leads to defects 

in smooth muscle development in the lung mesenchyme
134

. Expression of Wnt7b is 

downregulated in Wnt2
-/-

 null mutant lungs, suggesting a possible paracrine mechanism 

for Wnt2 signaling to the adjacent epithelium to activate Wnt7b expression and 

coordinate smooth muscle development. Interestingly, the expression of other key 

signaling factors known to regulate smooth muscle development are unaltered, and 

therefore the relative contribution of reduced epithelial-mesenchymal signaling to the loss 

of smooth muscle in Wnt2
-/-

 null mutant lungs is uncertain.  

To interrogate the contribution of epithelial signaling in Wnt2
-/-

 null mutant lungs, 

it will be interesting to isolate Wnt2
-/-

 null mutant lung mesenchyme and try rescuing the 

loss of smooth muscle gene expression with rWnt2 treatment. If Wnt2 is signaling in an 

autocrine manner to regulate smooth muscle development, then rWnt2 should fully 

rescue gene expression. If however, Wnt2 signaling requires the presence of the 

epithelium to mediate smooth muscle development, the rescue effect may be mild or 

negligible in the presence of rWnt2. An alternative approach to examine the requirements 
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for epithelial cross-talk would be to culture isolated wildtype lung mesenchyme in the 

presence of rWnt2, and examine whether smooth muscle gene expression is significantly 

upregulated. If Wnt2-mediated epithelial cross-talk is required for coordinating smooth 

muscle gene expression, I would not predict a dramatic upregulation of gene expression 

in the presence of rWnt2. 

Can ectopic Wnt2 expression impose a lung progenitor identity on early endoderm? 

 An intriguing concept emerging from the results in Chapter 3 is that of Wnt2 

signaling serving as a master regulator of the lung progenitor fate by activating !-catenin 

signaling in the foregut endoderm. A question left unresolved from the investigations 

described in Chapter 3 is whether the restricted effects of lung progenitor loss in the 

Wnt2 signaling loss-of-function model is due to the restricted expression pattern of 

Wnt2/2b, the presence of other factors expressed along the A-P axis in the mesoderm 

flanking the endoderm, or intrinsic patterning in the foregut endoderm which limits the 

responsiveness to Wnt2/2b signaling. 

It will be interesting to test whether ectopic Wnt2 signaling can expand lung 

progenitor identity in isolated endoderm, using published techniques
50

. If rWnt2 can 

induce Nkx2.1 expression along the endoderm tract beyond the zone of the foregut, this 

would suggest that the early endoderm is competent to give rise to Nkx2.1-positive 

progenitors. If rWnt2 is not capable of promoting Nkx2.1 identity beyond the foregut 

region, this would suggest that intrinsic factors expressed in the endoderm are already 

acting to restrict the foregut competence. Additionally, if the endoderm is cultured with 

adjacent mesoderm and rWnt2 is still able to expand the Nkx2.1 expression domain, this 

would suggest that the restricted pattern of Nkx2.1 expression in wild-type embryos is a 
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consequence of the restricted Wnt2/2b expression pattern. If, however, rWnt2 is unable to 

expand Nkx2.1 expression in the presence of mesoderm, this would suggest that other 

factors expressed in the mesoderm are restricting the activity of Wnt2 signaling. 

A role for Wnt2/!-catenin signaling in lung stem cells? 

In Chapter 3, I demonstrated that Wnt2 and !-catenin signaling coordinate the 

specification of an Nkx2.1-positive lung progenitor cell population in the embryo. This 

raises the question of whether or not a similar mechanism imposes a respiratory 

progenitor fate in embryonic stem cells (ESCs) and cells of the adult lung. A significant 

barrier to the use of stem cell-derived therapies is the lack of knowledge on how to 

efficiently direct a pluripotent cell type towards a homogenous population of tissue-

specific progenitors. Moreover, successful attempts too often rely on the introduction of 

transgenes to use tissue-specific promoters to drive differentiation
213, 214

. There are 

established methods for culturing mouse ESCs into definitive endoderm
215, 216

, and it will 

be interesting to test whether adding rWnt2 to ESC-derived endoderm would promote the 

specification of Nkx2.1-expressing progenitors. Additionally, it will also be interesting to 

test whether activating !-catenin signaling using the !-catenin agonist lithium chloride 

would also promote Nkx2.1 expression.  

One caveat to this approach is that it will require careful characterization of 

Nkx2.1 cells to distinguish between thyroid and lung progenitors. Sustained Wnt/!-

catenin signaling will also block differentiation in lung cell types
114, 217

, therefore 

persistent exposure to rWnt2 and activated !-catenin signaling may inhibit the 

differentiation of Nkx2.1-postive cells into mature respiratory lineages. 
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Is Wnt2 signaling important for mediating the lung injury and repair response?   

An emerging paradigm in adult injury/repair and disease mechanisms is the re-

expression of critical developmental signaling pathways
218-220

. Wnt ligands are not 

expressed at high levels in adult tissues; therefore the role for Wnt signaling in adult 

tissues is relatively unknown. This prompts the question of whether Wnt2 signaling is 

activated in adult airways during injury and repair processes.  

Preliminary data indicate that Wnt2 may play a role in the adult lung during 

airway repair. In the post-natal mouse lung, Wnt2 is expressed at low levels (Figure 4.2A-

C). However, after naphthalene-induced bronchiolar airway injury, Wnt2 expression is 

highly upregulated in both the epithelium and mesenchyme (Figure 4.2D-F). The 

expression of Wnt2 in the injured epithelium is intriguing, and could be originating in 

cells undergoing EMT in the basal lamina of the denuded airway or de novo Wnt2 

expression in the exfoliating airway epithelium. Possible insights into the functions of 

Wnt2 re-expression during airway injury will be accomplished by examining the repair 

response in surviving Wnt2
-/- 

null mutants (less than 20% survive after birth) or by 

examining the response in Wnt2/2b heterozygous compound mutants.  The injury and 

repair response will be examined at the cellular level by immunohistochemistry assessing 

for proliferation or differentiation of repopulating airway cell types in the denuded 

airways.  

If Wnt2-deficient adult lungs lose the ability to repair properly, it would be 

interesting to test whether a simple injection of lithium chloride would rescue repair by 

activating !-catenin signaling. Additionally, our laboratory has its own hyperoxic 
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chamber, which will permit testing for Wnt2 re-expression in other types of more distal 

airway injury. 

 

Concluding remarks 

 In this dissertation I have investigated the function of Wnt2 and Wnt/!-catenin 

signaling during lung development. These investigations describe the roles of Wnt2 and 

Wnt/!-catenin signaling in lung specification within the mouse foregut endoderm, and in 

the development of airway smooth muscle. Overall, these results contribute significantly 

to the body of knowledge for Wnt signaling in lung development. In examining these 

data in conjunction with the published literature, two important themes stand out. First, 

the activities, interactions with other pathways, and functions of Wnt signaling in the 

lung are dynamic. The requirements for Wnt signaling activity appear to occur at discrete 

timepoints during lung morphogenesis, and in or between discrete tissue and cellular 

compartments. Secondly, an increasing amount of published data implicates Wnt 

signaling in lung airway repair and pathogenesis. Therefore, it will be exciting to see how 

these and future findings will transition into investigations on adult pathological 

processes and regenerative technologies.   
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Figure 4.1: Schematic of Wnt2
cre/ERT2

 knock-in strategy. 
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Figure 4.1: Schematic of Wnt2
cre/ERT2

 knock-in strategy. 

 

Diagram of the Wnt2
cre/ERT2

 gene targeting strategy with a representative Southern blot 

using the indicated probe/ HindIII.  A cre recombinase cDNA fused to a mutant form of 

the human estrogen receptor ligand binding domain (creERT2) was used to replace the 

coding region of exon 1 of Wnt2.  The mutant receptor binds only the synthetic ligand 4-

hydroxytamoxifen, and in the presence of ligand cre recombinase is expressed in all cells 

that express the endogenous gene. The neomycin cassette was removed using Flper mice 

(flp sites=green circles).  
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Figure 4.2: Upregulation of Wnt2 expression after airway injury. 
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Figure 4.2: Upregulation of Wnt2 expression after airway injury. 

Histological cross-sections showing in situ hybridizations for Wnt2 expression in the 

postnatal wild-type mouse lung after naphthalene injury at 2, 4, and 7 days post-injection. 

(A-C) In control animals receiving saline intraperitoneal injections, low levels of Wnt2 

expression are observed in the uninjured lung. However upon intraperitoneal naphthalene 

injection, Wnt2 expression is highly upregulated throughout the airway epithelium and 

mesenchyme at 2 days (C), and Wnt2 expression levels remain upregulated through to 

day 7 of injury (E and F). Scale bars=200 µm (A-F). 
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